Digital Pathology_Accuracy Viewing Behavior and Image Characterization
数字病理学_观看行为和图像表征的准确性
基本信息
- 批准号:8970690
- 负责人:
- 金额:$ 62.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-12-31 至 2017-11-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAirArchivesAreaAttentionAtypical hyperplasiaBehaviorBenchmarkingBenignBiopsy SpecimenBreast biopsyCharacteristicsClinicalColorCommunitiesCommunity HospitalsComparative StudyComplementComplexComputer AnalysisComputersDataDeveloping CountriesDiagnosisDiagnosticDiagnostic ErrorsDiffuseDiseaseEnsureError SourcesEyeFoundationsGlassGoalsGoldHealthHistopathologyImageImage AnalysisImaging TechniquesImaging technologyInternetLeadLinkMachine LearningMalignant NeoplasmsMapsMeasuresMedicalMedical DeviceMedical ErrorsMethodsMicroscopeMicroscopicMovementMusNoninfiltrating Intraductal CarcinomaPathologistPathologyPatientsPatternPerformancePhasePhysiciansProcessRandomizedRecommendationResearchResearch PersonnelResolutionRiskRuralRural HospitalsSamplingScanningScientific EvaluationSlideStructureSystemTechniquesTechnologyTestingTextureTimeTrainingVisitVisualWomanbaseclinical carecomparativecomputer monitordiagnosis standarddiagnostic accuracydigitaldigital imagingdigital mediadistractioneye hand coordinationhealth care deliveryimaging systemimprovedinnovationinnovative technologiesinterestmedical schoolsmigrationnew technologynext generationnovelpedagogysample fixationscreeningtooltraffickingtransmission process
项目摘要
DESCRIPTION (provided by applicant): Approximately 1.4 million women per year depend on pathologists to accurately interpret breast biopsies for a diagnosis of benign disease or cancer. Diagnostic errors are alarmingly frequent and likely lead to altered patient treatment, especially at the thresholds of atypical hyperplasia and ductal carcinoma in situ, where up to 50% of cases are misclassified. The causes underlying these errors remain largely unknown. Technology similar to Google Maps now allows pan and zoom manipulation of high-resolution digital images of glass microscope slides. This technology has virtually replaced the microscope in medical schools and is rapidly diffusing into U.S. pathology practices. No research has evaluated the accuracy and efficiency of pathologists' interpretion of digital images vs. glass slides. However, these "digital slides" offer a novel opportunity to study the accuracy, efficiency, and viewing behavior of a large number of pathologists as they manipulate and interpret images. The innovative analytic techniques proposed in this application are similar to those used to improve the performance of pilots and air traffic controllers. Our specific aims are: Aim 1. Digital Image vs. Glass Slides: To compare the interpretive accuracy of pathologists viewing digitized slide images over the Internet to their performance viewing original glass slides under a microscope. A randomized national sample of pathologists (N=200) will interpret 240 test cases in one or both formats in two phases. Measures will include a diagnostic assessment for each test case and for digital slides, cursor- (i.e., mouse) tracking data and region of interest (ROI) markings. Completion of this aim will establish benchmarks for the comparative diagnostic accuracy of whole-slide digital images. Aim 2. Interpretive Screening Behavior: To identify visual scanning patterns associated with diagnostic accuracy and efficiency. Detailed simultaneous eye-tracking and cursor-tracking data will be collected on 60 additional pathologists while they interpret digital slides to complement data from Aim 1. Viewing patterns will be analyzed from computer representations of raw movement data. Videos depicting accurate, efficient visual scanning and cursor movement will be valuable tools in educating the next generation of digital pathologists. Aim 3. Image Analyses: To examine and classify the image characteristics (including color, texture, and structure) of ROIs captured in Aims 1 and 2. Computer-based statistical learning techniques will be used to identify image characteristics that lead to correct and incorrect diagnoses. Characteristics of both diagnostic and distracting ROIs will be identified, linking all three aims. In summary, we will determine whether digitized whole-slide images are diagnostically equivalent to original glass slides. Our in-depth scientific evaluation of viewing patterns and characteristics of ROIs identified by pathologists will be critical to understanding diagnostic errors and sources of distraction. Optimization of viewing techniques will improve diagnostic performance and thus, the quality of clinical care.
描述(由申请人提供):每年大约有 140 万女性依靠病理学家准确解读乳腺活检结果来诊断良性疾病或癌症。诊断错误非常频繁,并且可能导致患者治疗的改变,特别是在非典型增生和导管原位癌的阈值下,高达 50% 的病例被错误分类。这些错误背后的原因在很大程度上仍然未知。 类似于谷歌地图的技术现在可以对玻璃显微镜载玻片的高分辨率数字图像进行平移和缩放操作。这项技术实际上已经取代了医学院的显微镜,并迅速扩散到美国病理学实践中。没有研究评估病理学家对数字图像与载玻片的解读的准确性和效率。然而,这些“数字幻灯片”提供了一个新的机会来研究大量病理学家在操作和解释图像时的准确性、效率和观看行为。本申请中提出的创新分析技术与用于提高飞行员和空中交通管制员表现的技术类似。我们的具体目标是: 目标 1. 数字图像与载玻片:比较病理学家通过互联网查看数字化载玻片图像与在显微镜下查看原始载玻片的表现的解释准确性。病理学家的随机全国样本(N = 200)将分两个阶段以一种或两种格式解释 240 个测试用例。措施将包括对每个测试用例和数字幻灯片、光标(即鼠标)跟踪数据和感兴趣区域(ROI)标记的诊断评估。这一目标的完成将为全玻片数字图像的比较诊断准确性建立基准。 目标 2. 解释性筛查行为:识别与诊断准确性和效率相关的视觉扫描模式。将在另外 60 名病理学家解释数字幻灯片以补充目标 1 的数据时收集详细的同步眼动追踪和光标追踪数据。将根据原始运动数据的计算机表示来分析观看模式。描述准确、高效的视觉扫描和光标移动的视频将成为教育下一代数字病理学家的宝贵工具。目标 3. 图像分析:检查和分类目标 1 和 2 中捕获的 ROI 的图像特征(包括颜色、纹理和结构)。基于计算机的统计学习技术将用于识别导致正确和错误的图像特征诊断。将确定诊断性和分散注意力的 ROI 的特征,将所有三个目标联系起来。总之,我们将确定数字化的全玻片图像在诊断上是否等同于原始载玻片。我们对病理学家确定的 ROI 的观察模式和特征进行深入的科学评估,对于理解诊断错误和分心来源至关重要。观察技术的优化将提高诊断性能,从而提高临床护理的质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOANN G ELMORE其他文献
JOANN G ELMORE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOANN G ELMORE', 18)}}的其他基金
Metacognition and the Diagnostic Process in Pathology
元认知和病理学诊断过程
- 批准号:
10284893 - 财政年份:2021
- 资助金额:
$ 62.46万 - 项目类别:
Reader Accuracy in Pathology Interpretation and Diagnosis: Perception and Cognition (RAPID-PC)
病理解释和诊断的读者准确性:感知和认知 (RAPID-PC)
- 批准号:
9925189 - 财政年份:2018
- 资助金额:
$ 62.46万 - 项目类别:
Reader Accuracy in Pathology Interpretation and Diagnosis: Perception and Cognition (RAPID-PC)
病理解释和诊断的读者准确性:感知和认知 (RAPID-PC)
- 批准号:
10165663 - 财政年份:2018
- 资助金额:
$ 62.46万 - 项目类别:
Reader Accuracy in Pathology Interpretation and Diagnosis: Perception and Cognition (RAPID-PC)
病理解释和诊断的读者准确性:感知和认知 (RAPID-PC)
- 批准号:
10388503 - 财政年份:2018
- 资助金额:
$ 62.46万 - 项目类别:
Reader Accuracy in Pathology Interpretation and Diagnosis: Perception and Cognition (RAPID-PC)
病理解释和诊断的读者准确性:感知和认知 (RAPID-PC)
- 批准号:
10407524 - 财政年份:2018
- 资助金额:
$ 62.46万 - 项目类别:
Improving Melanoma Pathology Accuracy through Computer Vision Techniques - the IMPACT Study
通过计算机视觉技术提高黑色素瘤病理学的准确性 - IMPACT 研究
- 批准号:
9751222 - 财政年份:2017
- 资助金额:
$ 62.46万 - 项目类别:
Improving Melanoma Pathology Accuracy through Computer Vision Techniques - the IMPACT Study
通过计算机视觉技术提高黑色素瘤病理学的准确性 - IMPACT 研究
- 批准号:
9976466 - 财政年份:2017
- 资助金额:
$ 62.46万 - 项目类别:
Reducing Errors in the Diagnosis of Melanoma and Melanocytic Lesions
减少黑色素瘤和黑色素细胞病变的诊断错误
- 批准号:
9005424 - 财政年份:2016
- 资助金额:
$ 62.46万 - 项目类别:
Improving Melanoma Pathology Accuracy through Computer Vision Techniques - the IMPACT Study
通过计算机视觉技术提高黑色素瘤病理学的准确性 - IMPACT 研究
- 批准号:
9174605 - 财政年份:2016
- 资助金额:
$ 62.46万 - 项目类别:
Digital Pathology_Accuracy Viewing Behavior and Image Characterization
数字病理学_观看行为和图像表征的准确性
- 批准号:
8420220 - 财政年份:2012
- 资助金额:
$ 62.46万 - 项目类别:
相似国自然基金
锂空气电池四电子氧还原双原子位点设计与几何结构依赖机制研究
- 批准号:22309035
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
聚合物纤维膜的声至内源摩擦自充电效应及对空气过滤性能的影响
- 批准号:52373103
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
空气等离子体丝中高阶时空涡旋脉冲的产生和调控
- 批准号:12304368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
空气中微塑料与全氟化合物复合暴露致肺损伤的毒性效应及机制
- 批准号:42377434
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
中国典型大城市交通源氨排放特征及空气质量影响的高分辨率解析
- 批准号:42305189
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Digital Pathology_Accuracy Viewing Behavior and Image Characterization
数字病理学_观看行为和图像表征的准确性
- 批准号:
8420220 - 财政年份:2012
- 资助金额:
$ 62.46万 - 项目类别:
Digital Pathology_Accuracy Viewing Behavior and Image Characterization
数字病理学_观看行为和图像表征的准确性
- 批准号:
8771432 - 财政年份:2012
- 资助金额:
$ 62.46万 - 项目类别:
Digital Pathology_Accuracy Viewing Behavior and Image Characterization
数字病理学_观看行为和图像表征的准确性
- 批准号:
8601692 - 财政年份:2012
- 资助金额:
$ 62.46万 - 项目类别: