COVID-19 Network of Networks Expanding Clinical and Translational approaches to Predict Severe Illness in Children (CONNECT to Predict SIck Children)
COVID-19 网络网络扩展预测儿童严重疾病的临床和转化方法(CONNECT 预测患病儿童)
基本信息
- 批准号:10847827
- 负责人:
- 金额:$ 151.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAcuteAcute DiseaseAdolescentAdultAffectAppendicitisBiochemicalBiologicalBiological FactorsBiological MarkersBlood specimenCOVID-19COVID-19 pandemicCharacteristicsChildChildhoodChronicClinicalClinical DataCommunitiesDataDiagnosisDiagnosticDiseaseEnvironmental Risk FactorEpidemiologyExposure toFundingGeneticGenetic PolymorphismGoalsHealth Information SystemHealthcareHeart DiseasesImmune responseImmunologicsIndividualInfectionInflammatoryInformation SystemsInpatientsInterventionKnowledgeKnowledge ManagementLifeLung diseasesMachine LearningMaternal and Child HealthMeasurementModelingMorbidity - disease rateMultisystem Inflammatory Syndrome in ChildrenObesityOutpatientsPathogenicityPatient RecruitmentsPediatric HospitalsPhasePopulationPublic HealthRADxRare DiseasesReportingResearchRespiratory Signs and SymptomsRheumatologyRiskRisk FactorsRuptureSARS-CoV-2 infectionSeriesSeveritiesSocial SciencesSpecific qualifier valueSurveysSymptomsSyndromeSystemTestingTimeUnited States Health Resources and Services AdministrationVirusYouthcase findingcoronavirus diseasedata integrationdata resourcedevelopmental diseaseepidemiologic dataimprovedinfection riskmortalitymultidimensional datapredictive markerpredictive modelingpreventrisk predictionsaliva samplesevere COVID-19socialsocial determinantssociodemographicstranslational approach
项目摘要
The SARS-CoV-2 pandemic has manifested in children with a wide spectrum of clinical presentations ranging
from asymptomatic infection to devastating acute respiratory symptoms, appendicitis (often with rupture), and
Multisystem Inflammatory Syndrome in Children (MIS-C), a serious inflammatory condition presenting several
weeks after exposure to or infection with the virus. These presentations overlap in their clinical severity while
maintaining distinct clinical profiles. Public health and clinical approaches will benefit from an improved
understanding of the spectrum of illness associated with SARS CoV-2 and from the capacity to integrate data to
achieve two goals: (i) to identify the clinical, social, and biological variables that predict severe COVID-19 and
MIS-C, and (ii) to target those populations and individuals at greatest risk for harm from the virus. We propose
the COVID-19 Network of Networks Expanding Clinical and Translational approaches to Predict Severe Illness
in Children (CONNECT to Predict SIck Children) comprising eight partners providing access to data on >15
million children. Our network will systematically integrate social, epidemiological, genetic, immunological, and
computational approaches to identify both population- and individual-level risk factors for severe illness. Our
underlying hypothesis is that a combination of multidimensional data – clinical, sociodemographic, epidemiologic,
and biological -- can be integrated to predict which children are at greatest risk to have severe consequences
from SARS-CoV-2 infection. To test our hypothesis, we will develop CONNECT to Predict SIck Children, a
network of networks that leverages inpatient, outpatient, community, and epidemiological data resources to
support the analysis of large data using machine learning and model-based analyses. For the R61 phase, we
will develop and refine predictive models using data from our network of networks (Aim 1). We will also recruit
participants previously diagnosed with either COVID-19 or MIS-C (along with appropriate controls who have had
mild or asymptomatic infections with SARS-CoV2), who will provide survey data (including social determinants)
and saliva and blood samples to identify persisting biological factors associated with severe disease (Aim 2). We
will iteratively assess our models using a knowledge management framework that considers the marginal value
of data for improving models' predictive capacity over time. In the R33 phase, we will validate and further refine
predictive models incorporating data from additional participants recruited throughout our network of networks,
including newly infected children with severe COVID-19 or MIS-C identified through real-time surveillance (Aim
3). We seek to develop predictive models for children and adolescents that are useful, sensitive to community
and environmental contexts, and informed by the REASSURED framework specified by the RFA. The models
and biomarkers developed through our nationwide network of networks will produce generalizable knowledge
that will improve our ability to predict which children are at greatest risk for severe complications of SARS-CoV-
2 infection. This knowledge will facilitate interventions to prevent and treat severe pediatric illness.
SARS-COV-2大流行体现在具有广泛临床表现的儿童中
从不对称感染到毁灭性的急性呼吸道症状,阑尾炎(通常有破裂)和
儿童多系统炎症综合征(MIS-C),一种严重的炎症状况,表现出几种
暴露于病毒或感染该病毒后几周。这些演示文稿在其临床严重程度上重叠
保持不同的临床特征。公共卫生和临床方法将受益于改进
了解与SARS COV-2相关的疾病频谱以及从整合数据的能力到
实现两个目标:(i)确定预测严重的COVID-19和的临床,社会和生物学变量
MIS-C和(ii)针对那些人群和个人受到最大伤害风险的人。我们建议
COVID-19网络网络扩展了临床和翻译方法以预测严重疾病
在儿童(与预测儿童联系)中,完成了八个合作伙伴,可在> 15上访问数据
百万儿童。我们的网络将系统地整合社会,流行病学,遗传,免疫学和
识别严重疾病的人口和个人级别危险因素的计算方法。我们的
基本的假设是多维数据的组合 - 临床,社会人口统计学,流行病学,
和生物学 - 可以整合以预测哪些孩子有最大的风险有严重后果
来自SARS-COV-2感染。为了检验我们的假设,我们将开发连接以预测生病的孩子,一个
利用住院,门诊,社区和流行病学数据资源的网络网络
使用机器学习和基于模型的分析来支持大数据分析。对于R61阶段,我们
将使用来自我们网络网络的数据开发和完善预测模型(AIM 1)。我们还将招募
以前被诊断为Covid-19或MIS-C的参与者(以及已有的适当对照
SARS-COV2的轻度或不对称感染),他们将提供调查数据(包括社会决定者)
以及唾液和血液样本以鉴定与严重疾病相关的持续生物学因素(AIM 2)。我们
是否使用知识管理框架对我们的模型进行迭代评估,以考虑边际价值
随着时间的推移,用于改善模型的预测能力的数据。在R33阶段,我们将验证并进一步完善
预测模型从整个网络网络中招募的其他参与者导入数据,
包括通过实时监视确定的新感染的患有严重的Covid-19或MIS-C的新感染儿童(AIM
3)。我们试图为有用的儿童和青少年开发预测模型,对社区敏感
和环境环境,并通过RFA指定的保证框架来告知。模型
通过我们的全国网络网络开发的生物标志物将产生可普遍的知识
这将提高我们预测哪些儿童对SARS-COV严重并发症的最大风险的能力 -
2感染。这些知识将促进干预措施,以预防和治疗严重的小儿疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Laura Gennaro其他文献
MTC28, a novel 28-kilodalton proline-rich secreted antigen specific for the Mycobacterium tuberculosis complex
MTC28,一种新型 28 千道尔顿富含脯氨酸的分泌抗原,对结核分枝杆菌复合体具有特异性
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:3.1
- 作者:
Claudia Manca;Konstantin P. Lyashchenko;R. Colangeli;Maria Laura Gennaro - 通讯作者:
Maria Laura Gennaro
Molecular cloning, purification, and serological characterization of MPT63, a novel antigen secreted by Mycobacterium tuberculosis
结核分枝杆菌分泌的新型抗原 MPT63 的分子克隆、纯化和血清学表征
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:3.1
- 作者:
Claudia Manca;Konstantin P. Lyashchenko;H. Wiker;Donatella Usai;Donatella Usai;Roberto Colangeli;Maria Laura Gennaro - 通讯作者:
Maria Laura Gennaro
Maria Laura Gennaro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Laura Gennaro', 18)}}的其他基金
COVID-19 Network of Networks Expanding Clinical and Translational approaches to Predict Severe Illness in Children (CONNECT to Predict SIck Children)
COVID-19 网络网络扩展预测儿童严重疾病的临床和转化方法(CONNECT 预测患病儿童)
- 批准号:
10320995 - 财政年份:2021
- 资助金额:
$ 151.77万 - 项目类别:
COVID-19 Network of Networks Expanding Clinical and Translational approaches to Predict Severe Illness in Children (CONNECT to Predict SIck Children)
COVID-19 网络网络扩展预测儿童严重疾病的临床和转化方法(CONNECT 预测患病儿童)
- 批准号:
10273971 - 财政年份:2021
- 资助金额:
$ 151.77万 - 项目类别:
COVID-19 Network of Networks Expanding Clinical and Translational approaches to Predict Severe Illness in Children (CONNECT to Predict SIck Children)
COVID-19 网络网络扩展预测儿童严重疾病的临床和转化方法(CONNECT 预测患病儿童)
- 批准号:
10733696 - 财政年份:2021
- 资助金额:
$ 151.77万 - 项目类别:
Sex hormones and innate immunity in tuberculosis
结核病中的性激素和先天免疫
- 批准号:
10186699 - 财政年份:2020
- 资助金额:
$ 151.77万 - 项目类别:
Effects of donor plasma and recipient characteristics on convalescent plasma treatment outcome of COVID-19
供体血浆和受体特征对 COVID-19 恢复期血浆治疗结果的影响
- 批准号:
10225219 - 财政年份:2019
- 资助金额:
$ 151.77万 - 项目类别:
Biomarkers for tuberculosis: new questions, new tools
结核病生物标志物:新问题,新工具
- 批准号:
8529930 - 财政年份:2013
- 资助金额:
$ 151.77万 - 项目类别:
FISH-Flow platform for host-based tuberculosis diagnostics
用于基于宿主的结核病诊断的 FISH-Flow 平台
- 批准号:
9319621 - 财政年份:2013
- 资助金额:
$ 151.77万 - 项目类别:
FISH-Flow platform for host-based tuberculosis diagnostics
用于基于宿主的结核病诊断的 FISH-Flow 平台
- 批准号:
8895750 - 财政年份:2013
- 资助金额:
$ 151.77万 - 项目类别:
相似国自然基金
影像组学用于急性病毒性肺炎鉴别诊断的生物学机制探究
- 批准号:82172029
- 批准年份:2021
- 资助金额:55.00 万元
- 项目类别:面上项目
影像组学用于急性病毒性肺炎鉴别诊断的生物学机制探究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
胆碱能抗炎通路调节巨噬细胞M1/M2极化在CVB3诱导的急性病毒性心肌炎中的作用及机制研究
- 批准号:81870281
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
急性病毒感染中转录因子Tbet对TFH应答的调控及机制研究
- 批准号:31700774
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
调控巨噬细胞极化的microRNA分子鉴定及其在CVB3诱导的急性病毒性心肌炎中的作用
- 批准号:81472017
- 批准年份:2014
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Mentoring Emerging Researchers at CHLA (MERCH-LA)
指导 CHLA (MERCH-LA) 的新兴研究人员
- 批准号:
10797938 - 财政年份:2023
- 资助金额:
$ 151.77万 - 项目类别:
The role of epigenetic regulator UHRF1 in stability of induced regulatory T-cell function during influenza A virus-induced lung injury
表观遗传调节因子 UHRF1 在甲型流感病毒诱导的肺损伤过程中诱导调节 T 细胞功能稳定性中的作用
- 批准号:
10389878 - 财政年份:2023
- 资助金额:
$ 151.77万 - 项目类别:
Defining the protective or pathologic role of antibodies in Post-Ebola Syndrome
定义抗体在埃博拉后综合症中的保护或病理作用
- 批准号:
10752441 - 财政年份:2023
- 资助金额:
$ 151.77万 - 项目类别:
Development of an Oral Pan-Coronavirus Drug Cocktail
口服泛冠状病毒药物混合物的开发
- 批准号:
10714472 - 财政年份:2023
- 资助金额:
$ 151.77万 - 项目类别:
Host Defense Small Molecule Development for COVID-19 Treatment by Targeting Lysosome
通过靶向溶酶体治疗 COVID-19 的宿主防御小分子开发
- 批准号:
10735492 - 财政年份:2023
- 资助金额:
$ 151.77万 - 项目类别: