Mechanobiology of Cardiac Outflow Tract Morphogenesis

心脏流出道形态发生的力学生物学

基本信息

  • 批准号:
    10854156
  • 负责人:
  • 金额:
    $ 19.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-15 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Proper growth, septation, and maturation of the cardiac outflow tract (OFT) into valved aortic and pulmonary outlets are essential for oxygenated circulation after birth. 1-2% of live births and up to 30% of pre-term fetal deaths have congenital heart defects, many of which affect the remodeling of the valvuloseptal primordial tissues, called the proximal and distal outflow cushions. Despite much effort uncovering the genetic basis of early OFT cushion formation, this understanding has not explained the clinically relevant phases of growth, condensation and elongation into valves and septa. Further, emerging evidence suggests that the formation, growth, and maturation of the valvuloseptal appratus is coupled with that of the ventricles. Gross congenital valve malformations induce hemodynamic changes within the developing ventricles (via stenosis and/or regurgitation), leading to structural differences in their myofiber architecture and trabecular patterning. While many of these malformations are gestationally survivable, structrural valvular defects like mitral valve prolapse, which have a developmental origin, also incur premature ventricular failure and risk of sudden death. It is currently unknown how hemodynamic perturbations drive shared fetal ventricular and valvular remodeling, in part because prevailing genetic tools lack the power to separate genetic from hemodynamic causality. The Butcher lab has pioneered innovative technology 1) to quantify local in vivo mechanical forces within cardiac inflow, ventricular, and OFT domains, and register them with local in situ gene/protein expression, 2) to non-invasively visualize and precisely ablate intracardiac tissues without collateral damage in vivo, and 3) to directly assess local spatial cellular transcriptomes across entire thin sections. This CAROL Act Supplement will expand the current funded project to interrogate how valvular and ventricular remodeling is coupled to their shared hemodynamic environment. First, emerging state of the art high-resolution spatial transcriptomics will be applied to achieve first ever true single-cell spatial resolution across full-size fetal heart domains (10x10 mm areas). This will be applied to uniquely identify inflow atrioventricular, ventricular, and outflow tract cellular transcriptional profiles in embryos treated with sham or hemodynamically perturbed conditions leading to established cardiac structural malformations. This will be further performed at early and late stages of malformation, enabled by an innovative device for precise planar application of cryosections. Next, we will apply novel cellular neighborhood analysis tools to determine unique and shared neighborhoods that associate with local structural changes in the atrioventricular valves, compact and trabecular ventricular domains, and outflow tracts. Cellular neighborhood candidates will then be verified by secondary immunofluorescence methods. These results will dramatically improve our understanding of how valve-related malformations induce undesirable ventricular remodeling towards impaired functional longevity, and identify multi-cellular fingerprint signatures that could be predictive of these risks.
项目概要 心脏流出道 (OFT) 正常生长、分隔和成熟,进入带瓣膜的主动脉和肺动脉 出口对于出生后的氧循环至关重要。 1-2% 的活产儿和高达 30% 的早产儿 死亡有先天性心脏缺陷,其中许多影响瓣膜间隔原始组织的重塑, 称为近端流出垫和远端流出垫。尽管付出了很多努力来揭示早期 OFT 的遗传基础 缓冲垫的形成,这种理解并没有解释临床相关的生长阶段、凝结阶段 以及阀门和隔膜的伸长。此外,新出现的证据表明,形成、生长和 瓣膜间隔装置的成熟与心室的成熟相关。总先天性瓣膜 畸形引起发育中的心室内的血流动力学变化(通过狭窄和/或反流), 导致其肌纤维结构和小梁图案的结构差异。虽然其中许多 畸形是妊娠期可存活的结构性瓣膜缺陷,如二尖瓣脱垂,其具有 发育起源,还会导致心室早衰和猝死的风险。目前尚不清楚 血流动力学扰动如何驱动胎儿心室和瓣膜重塑,部分原因是 流行的遗传工具缺乏将遗传与血流动力学因果关系分开的能力。屠夫实验室有 开创了创新技术 1) 量化心脏流入、心室、 和 OFT 域,并将它们与本地原位基因/蛋白质表达注册,2) 以非侵入性可视化 并精确消融心内组织而不会造成体内附带损伤,3)直接评估局部空间 整个薄片的细胞转录组。该 CAROL 法案补充文件将扩大目前的资助范围 项目旨在探究瓣膜和心室重塑如何与其共同的血流动力学耦合 环境。首先,将应用新兴的最先进的高分辨率空间转录组学来实现第一个 跨全尺寸胎儿心脏域(10x10 毫米区域)的真正单细胞空间分辨率。这将被应用 独特地识别胚胎中流入房室、心室和流出道细胞转录谱 用假手术或血流动力学紊乱的条件进行治疗,导致确定的心脏结构 畸形。这将在畸形的早期和晚期阶段进一步进行,通过创新的方法实现 用于精确平面应用冷冻切片的装置。接下来,我们将应用新颖的细胞邻域分析 确定与当地结构变化相关的独特和共享社区的工具 房室瓣、心室致密区和小梁区以及流出道。蜂窝邻里 然后将通过二次免疫荧光方法验证候选者。这些结果将戏剧性地 提高我们对瓣膜相关畸形如何引起不良心室重塑的理解 防止功能寿命受损,并识别可以预测的多细胞指纹特征 这些风险。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Talbot Butcher其他文献

Jonathan Talbot Butcher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Talbot Butcher', 18)}}的其他基金

Mechanobiology of Cardiac Outflow Tract Morphogenesis
心脏流出道形态发生的力学生物学
  • 批准号:
    10467653
  • 财政年份:
    2022
  • 资助金额:
    $ 19.77万
  • 项目类别:
Mechanobiology of Cardiac Outflow Tract Morphogenesis
心脏流出道形态发生的力学生物学
  • 批准号:
    10592432
  • 财政年份:
    2022
  • 资助金额:
    $ 19.77万
  • 项目类别:
Endothelial-Interstitial Interactions in Aortic Valve Homeostasis and Disease
主动脉瓣稳态和疾病中的内皮-间质相互作用
  • 批准号:
    10456648
  • 财政年份:
    2018
  • 资助金额:
    $ 19.77万
  • 项目类别:
Endothelial-Interstitial Interactions in Aortic Valve Homeostasis and Disease
主动脉瓣稳态和疾病中的内皮-间质相互作用
  • 批准号:
    9978112
  • 财政年份:
    2018
  • 资助金额:
    $ 19.77万
  • 项目类别:
Endothelial-Interstitial Interactions in Aortic Valve Homeostasis and Disease
主动脉瓣稳态和疾病中的内皮-间质相互作用
  • 批准号:
    9756191
  • 财政年份:
    2018
  • 资助金额:
    $ 19.77万
  • 项目类别:
Endothelial-Interstitial Interactions in Aortic Valve Homeostasis and Disease
主动脉瓣稳态和疾病中的内皮-间质相互作用
  • 批准号:
    10231228
  • 财政年份:
    2018
  • 资助金额:
    $ 19.77万
  • 项目类别:
Bioprinted Vascularized Tissue Constructs
生物打印血管化组织结构
  • 批准号:
    9313171
  • 财政年份:
    2016
  • 资助金额:
    $ 19.77万
  • 项目类别:
Bioprinted Vascularized Tissue Constructs
生物打印血管化组织结构
  • 批准号:
    9168865
  • 财政年份:
    2016
  • 资助金额:
    $ 19.77万
  • 项目类别:
Adhesive signaling in aortic valve development and disease
主动脉瓣发育和疾病中的粘附信号传导
  • 批准号:
    9312882
  • 财政年份:
    2015
  • 资助金额:
    $ 19.77万
  • 项目类别:
Effects of hydroxyapatite mineralization and valve cell phenotype
羟基磷灰石矿化和瓣膜细胞表型的影响
  • 批准号:
    8493043
  • 财政年份:
    2013
  • 资助金额:
    $ 19.77万
  • 项目类别:

相似国自然基金

TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
  • 批准号:
    52361020
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
  • 批准号:
    52309088
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
  • 批准号:
    42376002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
  • 批准号:
    42371397
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目

相似海外基金

Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
  • 批准号:
    10677047
  • 财政年份:
    2023
  • 资助金额:
    $ 19.77万
  • 项目类别:
Hypothalamic Sleep-Wake Neuron Defects in Alzheimer’s disease
阿尔茨海默病中的下丘脑睡眠-觉醒神经元缺陷
  • 批准号:
    10770001
  • 财政年份:
    2023
  • 资助金额:
    $ 19.77万
  • 项目类别:
Novel Roles of TAZ and YAP in DNA Damage Repair with 3D Genome Organization and the Therapeutic Resistance in Glioblastoma
TAZ 和 YAP 在 3D 基因组组织 DNA 损伤修复中的新作用以及胶质母细胞瘤的治疗耐药性
  • 批准号:
    10649830
  • 财政年份:
    2023
  • 资助金额:
    $ 19.77万
  • 项目类别:
Understanding the Role of GARP Proteins in Rod Outer Segment Disc Formation and Retinal Degeneration
了解 GARP 蛋白在视杆外节盘形成和视网膜变性中的作用
  • 批准号:
    10748725
  • 财政年份:
    2023
  • 资助金额:
    $ 19.77万
  • 项目类别:
Architecture of inhibitory G protein signaling in the hippocampus
海马抑制性 G 蛋白信号传导的结构
  • 批准号:
    10659438
  • 财政年份:
    2023
  • 资助金额:
    $ 19.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了