Mechanobiology of Cardiac Outflow Tract Morphogenesis
心脏流出道形态发生的力学生物学
基本信息
- 批准号:10592432
- 负责人:
- 金额:$ 74.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AblationAcuteAffectAutomobile DrivingBackBirdsBirthCardiacCellsChickChronicCirculationClinicalCollaborationsComplementComplexComputer AnalysisCongenital AbnormalityCongenital Heart DefectsDataDefectDistalEchocardiographyEmbryoEndocardiumEnvironmentEsthesiaEtiologyEventFailureFelis catusFetal DeathFetal GrowthFutureGenesGeneticGrowthHumanIn SituLasersLiquid substanceLive BirthLungMechanical StressMechanicsMesenchymalMesenchymeModelingMolecularMorphogenesisMorphologyMutant Strains MiceOrgan Culture TechniquesPatternPhasePhenotypePhysical condensationProcessProliferatingRNARegulator GenesResolutionResourcesRoleSeveritiesShapesSignal TransductionSlideStratificationStressTechnologyTestingTissuesVisualizationZebrafishantagonistaortic valvearmclinically relevantcohortfetalgenetic approachhemodynamicsin uteroin vivoinnovationinnovative technologiesinsightmalformationmechanical forcemechanotransductionmorphogensnoveloperationpressureprogramsprotein expressionresponseshear stressspatiotemporalstress statetissue stresstranscriptomicsultrasound
项目摘要
Proper growth, septation, and maturation of the cardiac outflow tract (OFT) into valved aortic and pulmonary
outlets are essential for oxygenated circulation after birth. 1-2% of live births and up to 30% of pre-term fetal
deaths have congenital heart defects, many of which affect the remodeling of the valvuloseptal primordial tissues,
called the proximal and distal outflow cushions. Despite much effort uncovering the genetic basis of early OFT
cushion formation, this understanding has not explained the clinically relevant phases of growth, condensation
and elongation into valves and septa. One reason for this appears to be the domination of conditional and
collective signaling mechanisms that are well accessible by genetic approaches. Mechanical forces (shear
stress, pressure, tension) are ever present during this complex period of OFT growth and remodeling, but to date
no studies have investigated these key interactions, especially for their contributions to OFT defects. We believe
that clinically relevant OFT remodeling arise from improper cushion endocardial and/or mesenchymal sensation
of and/or response to their local mechanical environment, which in turn drives the incorrect signaling programs.
The Butcher lab has pioneered innovative technology 1) to quantify local in vivo mechanical forces within this
OFT region and register them with local in situ gene/protein expression, 2) to not-invasively visualize and
precisely ablate intracardiac tissues without collateral damage in vivo, and 3) to directly test mechanobiological
mechanisms of endocardial cushion growth and remodeling ex vivo. The preliminary data in this proposal present
evidence of two mechanoregulated molecular switches that potentiate between OFT cushion proliferation and
differentiation, which motivates the novel hypothesis that local mechanosensaton operates molecular switches
to control sizing, shape, and stratification of the outflow valves and septa. Aim 1 will implement innovative non-
invasive laser photoablations of the formed proximal or distal cushions of the avian OFT to create genetically
unbiased clinically relevant outflow tract malformations. We will then quantitatively analyze and register their
hemodynamic, morphological and phenotypic changes. We will further apply novel deconvolution integration of
sc-Seq and slide-seq to reveal unprecedented spatio-temporal resolution of the cellular course of malformation,
and elaborate how known and newly discovered molecular regulatory programs associate with local mechanical
stress changes. Aim 2 will test the mechanistic causailty of the mechanotransduction operated molecular
switches in the OFT cushion endocardium via shear stress patterns. Aim 3 will test the operation of different
mechanobiogical switches in cushion mesenchyme via tension/compression. using high throughput ex vivo
organ cultures. The findings from these studies will substantally advance our understanding of
mechanoregulation and conditional signaling in outflow tract valuvloseptal maturation, paving the way for
strategies to manipulate such signaling programs to reduce or even rescue CHD severity in utero.
心脏流出道(通常)成瓣主动脉和肺部的心脏流出道的适当生长,分隔和成熟
出生后,出口对于氧合循环至关重要。 1-2%的活产和最多30%的胎儿胎儿
死亡患有先天性心脏缺陷,其中许多都会影响瓣膜原始组织的重塑,
称为近端和远端流出垫。尽管努力揭示了早期的遗传基础
缓冲形成,这种理解尚未解释临床相关的生长阶段
并伸长到阀门和隔膜中。原因之一似乎是条件和
通过遗传方法可以很好地访问的集体信号传导机制。机械力(剪切力
在这个复杂的经常生长和重塑期间,压力,压力,紧张)曾经存在,但迄今为止
没有研究研究这些关键相互作用,尤其是因为它们对经常缺陷的贡献。我们相信
临床上相关的经常重塑是由不适当的垫子心内膜和/或间充质感觉引起的
和/或对其当地机械环境的响应,这又驱动了不正确的信号程序。
屠夫实验室已经开创了创新技术1)在此内量化本地机械力量
经常区域并将其注册为局部原位基因/蛋白质表达,2)不侵入性地可视化和
精确消除体内没有附带损害的心脏内组织,3)直接测试机械生物学
心内膜垫的生长和重塑后的机制。此提案中的初步数据
两个机械调节的分子开关的证据,它们在经常垫增殖和
分化,这激发了新的假设,即局部机械术运行分子开关
控制流出阀和隔膜的尺寸,形状和分层。 AIM 1将实施创新的非 -
鸟类OFT形成的近端或远端垫子的侵入性激光光照相以创建遗传
公正的临床相关流出道畸形。然后,我们将定量分析并注册他们的
血液动力学,形态学和表型变化。我们将进一步应用新颖的反卷积整合
sc-seq和slide-seq揭示了畸形的细胞过程前所未有的时空分辨率,
并阐述了如何与局部机械相关的已知和新发现的分子调节程序
压力改变。 AIM 2将测试机械转导的机械因果关系。
通过剪切应力模式在经常坐垫内膜中开关。 AIM 3将测试不同的操作
通过张力/压缩,机械性开关在垫间间质中。使用高吞吐量的离体
器官文化。这些研究的发现将大大提高我们对
机械调节和流出道的有条件信号传导,铺平了
操纵此类信号计划的策略,以减少甚至可以挽救子宫内的CHD严重程度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Talbot Butcher其他文献
Jonathan Talbot Butcher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Talbot Butcher', 18)}}的其他基金
Mechanobiology of Cardiac Outflow Tract Morphogenesis
心脏流出道形态发生的力学生物学
- 批准号:
10467653 - 财政年份:2022
- 资助金额:
$ 74.32万 - 项目类别:
Mechanobiology of Cardiac Outflow Tract Morphogenesis
心脏流出道形态发生的力学生物学
- 批准号:
10854156 - 财政年份:2022
- 资助金额:
$ 74.32万 - 项目类别:
Endothelial-Interstitial Interactions in Aortic Valve Homeostasis and Disease
主动脉瓣稳态和疾病中的内皮-间质相互作用
- 批准号:
10456648 - 财政年份:2018
- 资助金额:
$ 74.32万 - 项目类别:
Endothelial-Interstitial Interactions in Aortic Valve Homeostasis and Disease
主动脉瓣稳态和疾病中的内皮-间质相互作用
- 批准号:
9978112 - 财政年份:2018
- 资助金额:
$ 74.32万 - 项目类别:
Endothelial-Interstitial Interactions in Aortic Valve Homeostasis and Disease
主动脉瓣稳态和疾病中的内皮-间质相互作用
- 批准号:
9756191 - 财政年份:2018
- 资助金额:
$ 74.32万 - 项目类别:
Endothelial-Interstitial Interactions in Aortic Valve Homeostasis and Disease
主动脉瓣稳态和疾病中的内皮-间质相互作用
- 批准号:
10231228 - 财政年份:2018
- 资助金额:
$ 74.32万 - 项目类别:
Adhesive signaling in aortic valve development and disease
主动脉瓣发育和疾病中的粘附信号传导
- 批准号:
9312882 - 财政年份:2015
- 资助金额:
$ 74.32万 - 项目类别:
Effects of hydroxyapatite mineralization and valve cell phenotype
羟基磷灰石矿化和瓣膜细胞表型的影响
- 批准号:
8493043 - 财政年份:2013
- 资助金额:
$ 74.32万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SSRP1/Sp-1转录调控的MFGE8通过SIRT6影响铁死亡在脓毒症急性肾损伤中的机制研究
- 批准号:82302418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人群mtDNA空间异质性对急性高原反应发病的影响机制研究
- 批准号:42377466
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高甘油三酯通过TLR4/caspase-8影响急性胰腺炎CD4+T细胞程序性死亡的机制研究
- 批准号:82360135
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 74.32万 - 项目类别:
Resident Memory T cells in Chronic Kidney Disease
慢性肾脏病中的常驻记忆 T 细胞
- 批准号:
10676628 - 财政年份:2023
- 资助金额:
$ 74.32万 - 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 74.32万 - 项目类别:
Optimizing Small Molecule Mechanomimetics to Treat Age-related Osteoporosis.
优化小分子力学模拟治疗与年龄相关的骨质疏松症。
- 批准号:
10807685 - 财政年份:2023
- 资助金额:
$ 74.32万 - 项目类别:
Sensory Mechanisms of Cadmium-Induced Behavioral Disorders Across Generations
镉引起的几代人行为障碍的感觉机制
- 批准号:
10747559 - 财政年份:2023
- 资助金额:
$ 74.32万 - 项目类别: