Mechanobiology of Cardiac Outflow Tract Morphogenesis
心脏流出道形态发生的力学生物学
基本信息
- 批准号:10592432
- 负责人:
- 金额:$ 74.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AblationAcuteAffectAutomobile DrivingBackBirdsBirthCardiacCellsChickChronicCirculationClinicalCollaborationsComplementComplexComputer AnalysisCongenital AbnormalityCongenital Heart DefectsDataDefectDistalEchocardiographyEmbryoEndocardiumEnvironmentEsthesiaEtiologyEventFailureFelis catusFetal DeathFetal GrowthFutureGenesGeneticGrowthHumanIn SituLasersLiquid substanceLive BirthLungMechanical StressMechanicsMesenchymalMesenchymeModelingMolecularMorphogenesisMorphologyMutant Strains MiceOrgan Culture TechniquesPatternPhasePhenotypePhysical condensationProcessProliferatingRNARegulator GenesResolutionResourcesRoleSeveritiesShapesSignal TransductionSlideStratificationStressTechnologyTestingTissuesVisualizationZebrafishantagonistaortic valvearmclinically relevantcohortfetalgenetic approachhemodynamicsin uteroin vivoinnovationinnovative technologiesinsightmalformationmechanical forcemechanotransductionmorphogensnoveloperationpressureprogramsprotein expressionresponseshear stressspatiotemporalstress statetissue stresstranscriptomicsultrasound
项目摘要
Proper growth, septation, and maturation of the cardiac outflow tract (OFT) into valved aortic and pulmonary
outlets are essential for oxygenated circulation after birth. 1-2% of live births and up to 30% of pre-term fetal
deaths have congenital heart defects, many of which affect the remodeling of the valvuloseptal primordial tissues,
called the proximal and distal outflow cushions. Despite much effort uncovering the genetic basis of early OFT
cushion formation, this understanding has not explained the clinically relevant phases of growth, condensation
and elongation into valves and septa. One reason for this appears to be the domination of conditional and
collective signaling mechanisms that are well accessible by genetic approaches. Mechanical forces (shear
stress, pressure, tension) are ever present during this complex period of OFT growth and remodeling, but to date
no studies have investigated these key interactions, especially for their contributions to OFT defects. We believe
that clinically relevant OFT remodeling arise from improper cushion endocardial and/or mesenchymal sensation
of and/or response to their local mechanical environment, which in turn drives the incorrect signaling programs.
The Butcher lab has pioneered innovative technology 1) to quantify local in vivo mechanical forces within this
OFT region and register them with local in situ gene/protein expression, 2) to not-invasively visualize and
precisely ablate intracardiac tissues without collateral damage in vivo, and 3) to directly test mechanobiological
mechanisms of endocardial cushion growth and remodeling ex vivo. The preliminary data in this proposal present
evidence of two mechanoregulated molecular switches that potentiate between OFT cushion proliferation and
differentiation, which motivates the novel hypothesis that local mechanosensaton operates molecular switches
to control sizing, shape, and stratification of the outflow valves and septa. Aim 1 will implement innovative non-
invasive laser photoablations of the formed proximal or distal cushions of the avian OFT to create genetically
unbiased clinically relevant outflow tract malformations. We will then quantitatively analyze and register their
hemodynamic, morphological and phenotypic changes. We will further apply novel deconvolution integration of
sc-Seq and slide-seq to reveal unprecedented spatio-temporal resolution of the cellular course of malformation,
and elaborate how known and newly discovered molecular regulatory programs associate with local mechanical
stress changes. Aim 2 will test the mechanistic causailty of the mechanotransduction operated molecular
switches in the OFT cushion endocardium via shear stress patterns. Aim 3 will test the operation of different
mechanobiogical switches in cushion mesenchyme via tension/compression. using high throughput ex vivo
organ cultures. The findings from these studies will substantally advance our understanding of
mechanoregulation and conditional signaling in outflow tract valuvloseptal maturation, paving the way for
strategies to manipulate such signaling programs to reduce or even rescue CHD severity in utero.
心脏流出道 (OFT) 正常生长、分隔和成熟,进入带瓣膜的主动脉和肺动脉
出口对于出生后的氧循环至关重要。 1-2% 的活产儿和高达 30% 的早产儿
死亡有先天性心脏缺陷,其中许多影响瓣膜间隔原始组织的重塑,
称为近端流出垫和远端流出垫。尽管付出了很多努力来揭示早期 OFT 的遗传基础
缓冲垫的形成,这种理解并没有解释临床相关的生长阶段、凝结阶段
以及阀门和隔膜的伸长。造成这种情况的原因之一似乎是有条件和
可以通过遗传方法轻松访问的集体信号机制。机械力(剪切力
在 OFT 成长和重塑的这个复杂时期,压力、压力、紧张)始终存在,但迄今为止
没有研究调查这些关键的相互作用,特别是它们对 OFT 缺陷的影响。我们相信
临床相关的 OFT 重塑是由不适当的心内膜和/或间质感觉垫引起的
和/或对其本地机械环境的响应,这反过来又驱动了不正确的信号程序。
Butcher 实验室开创了创新技术 1) 量化体内局部机械力
OFT 区域并将其与局部原位基因/蛋白质表达进行登记,2) 以非侵入性方式可视化和
精确消融心内组织而不会造成体内附带损伤,3)直接测试机械生物学
离体心内膜垫生长和重塑的机制。本提案中的初步数据
两个机械调节分子开关的证据可以增强 OFT 垫增殖和
分化,激发了局部机械感觉操作分子开关的新假设
控制流出阀和隔垫的尺寸、形状和分层。目标 1 将实施创新的非
对禽类 OFT 形成的近端或远端垫进行侵入性激光光消融,以产生基因
公正的临床相关流出道畸形。然后我们将定量分析并记录他们的
血流动力学、形态和表型的变化。我们将进一步应用新颖的反卷积积分
sc-Seq和slide-seq揭示了细胞畸形过程前所未有的时空分辨率,
并详细阐述已知和新发现的分子调控程序如何与局部机械相关联
压力变化。目标 2 将测试机械传导操作分子的机械因果关系
通过剪切应力模式在 OFT 缓冲心内膜中进行开关。目标3将测试不同的操作
通过张力/压缩在缓冲间充质中进行机械生物学开关。使用高通量离体
器官培养。这些研究的结果将极大地增进我们对
流出道瓣膜成熟中的机械调节和条件信号传导,为
操纵此类信号程序以减轻甚至挽救子宫内冠心病严重程度的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Talbot Butcher其他文献
Jonathan Talbot Butcher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Talbot Butcher', 18)}}的其他基金
Mechanobiology of Cardiac Outflow Tract Morphogenesis
心脏流出道形态发生的力学生物学
- 批准号:
10467653 - 财政年份:2022
- 资助金额:
$ 74.32万 - 项目类别:
Mechanobiology of Cardiac Outflow Tract Morphogenesis
心脏流出道形态发生的力学生物学
- 批准号:
10854156 - 财政年份:2022
- 资助金额:
$ 74.32万 - 项目类别:
Endothelial-Interstitial Interactions in Aortic Valve Homeostasis and Disease
主动脉瓣稳态和疾病中的内皮-间质相互作用
- 批准号:
10456648 - 财政年份:2018
- 资助金额:
$ 74.32万 - 项目类别:
Endothelial-Interstitial Interactions in Aortic Valve Homeostasis and Disease
主动脉瓣稳态和疾病中的内皮-间质相互作用
- 批准号:
9978112 - 财政年份:2018
- 资助金额:
$ 74.32万 - 项目类别:
Endothelial-Interstitial Interactions in Aortic Valve Homeostasis and Disease
主动脉瓣稳态和疾病中的内皮-间质相互作用
- 批准号:
9756191 - 财政年份:2018
- 资助金额:
$ 74.32万 - 项目类别:
Endothelial-Interstitial Interactions in Aortic Valve Homeostasis and Disease
主动脉瓣稳态和疾病中的内皮-间质相互作用
- 批准号:
10231228 - 财政年份:2018
- 资助金额:
$ 74.32万 - 项目类别:
Adhesive signaling in aortic valve development and disease
主动脉瓣发育和疾病中的粘附信号传导
- 批准号:
9312882 - 财政年份:2015
- 资助金额:
$ 74.32万 - 项目类别:
Effects of hydroxyapatite mineralization and valve cell phenotype
羟基磷灰石矿化和瓣膜细胞表型的影响
- 批准号:
8493043 - 财政年份:2013
- 资助金额:
$ 74.32万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
利多卡因通过Nav1.8通道调控白介素31表达影响特应性皮炎急性瘙痒的机制
- 批准号:82373490
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
超急性期免疫表征影响脑卒中预后研究
- 批准号:
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:
eIF2α/ATF3通路调控CPT1α影响线粒体稳态在急性肾损伤慢性化中的机制研究
- 批准号:82300838
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 74.32万 - 项目类别:
Resident Memory T cells in Chronic Kidney Disease
慢性肾脏病中的常驻记忆 T 细胞
- 批准号:
10676628 - 财政年份:2023
- 资助金额:
$ 74.32万 - 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 74.32万 - 项目类别:
Optimizing Small Molecule Mechanomimetics to Treat Age-related Osteoporosis.
优化小分子力学模拟治疗与年龄相关的骨质疏松症。
- 批准号:
10807685 - 财政年份:2023
- 资助金额:
$ 74.32万 - 项目类别:
Sensory Mechanisms of Cadmium-Induced Behavioral Disorders Across Generations
镉引起的几代人行为障碍的感觉机制
- 批准号:
10747559 - 财政年份:2023
- 资助金额:
$ 74.32万 - 项目类别: