Practical Approaches to Care in Emergency Syncope (PACES)

紧急晕厥的实用护理方法 (PACES)

基本信息

  • 批准号:
    10854193
  • 负责人:
  • 金额:
    $ 50.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Syncope (or transient loss of consciousness) is a common reason to present to the ED, representing over 1.3 million visits per year in the United States. Although syncope is most often benign, it can occasionally be caused by serious cardiac diseases such as cardiac dysrhythmia, valvular heart disease, or other structural heart disease. Despite thorough evaluation in the ED, the cause of syncope remains unknown in over 50% of cases. The goal of this project is to use artificial intelligence-electrocardiogram (ECG) models to improve the diagnosis of cardiac disease for patients who present to the emergency department (ED) with syncope, by better delineating which patients require further cardiac testing, such as echocardiography or prolonged cardiac monitoring. Artificial intelligence (AI) models, using machine learning approaches, have been developed using retrospective ECG data to predict valvular heart disease and, more broadly, any structural heart disease. The first model, known as ValveNet, is highly accurate at predicting mitral regurgitation, aortic stenosis, and aortic regurgitation. The second model, known as EchoNext, is highly accurate at predicting all forms of structural heart disease as diagnosed by echocardiography, including valvular heart disease, ventricular systolic dysfunction, left ventricular hypertrophy, and significant pericardial effusions. While promising, these two AI models require external validation prior to clinical implementation. In Aim 1 of this proposal, we use prospectively collect data on ~1,012 ED patients with syncope/pre- syncope to validate the predictive accuracy of these two AI models in detecting valvular and structural heat disease, including mitral valve prolapse, using echocardiography as our gold standard. In Aim 2, we will assess the whether baseline valvular heart disease is an independent risk factor for serious cardiac events, such as acute cardiac dysrhythmias, at 30 days among ED patients with syncope. If validated and shown to accurately predict valvular and structural heart disease, these artificial intelligence models could play a major role in improving emergency syncope care by rapidly identifying patients who require echocardiography and/or prolonged cardiac monitoring. This would, in turn, lead to expedited medical and surgical therapy to reduce cardiac morbidity and mortality. This study, entitled SyncopeNet, will help improve clinical care for patients with syncope and advance the field of syncope research.
项目概要/摘要 晕厥(或短暂意识丧失)是向急诊科就诊的常见原因,代表超过 130 万人 每年访问美国。虽然晕厥通常是良性的,但偶尔也可能由严重的原因引起 心脏病,例如心律失常、瓣膜性心脏病或其他结构性心脏病。尽管彻底 在急诊室的评估中,超过 50% 的病例晕厥的原因仍然未知。该项目的目标是使用 人工智能心电图 (ECG) 模型可改善以下患者的心脏病诊断 通过更好地描述哪些患者需要进一步心脏检查,将晕厥送往急诊科 (ED) 测试,例如超声心动图或长时间心脏监测。 使用机器学习方法的人工智能 (AI) 模型是使用回顾性心电图开发的 预测瓣膜性心脏病以及更广泛的任何结构性心脏病的数据。第一个模型被称为 ValveNet 在预测二尖瓣关闭不全、主动脉瓣狭窄和主动脉关闭不全方面非常准确。第二个 称为 EchoNext 的模型在预测各种形式的结构性心脏病方面非常准确,如诊断为 超声心动图,包括瓣膜性心脏病、心室收缩功能障碍、左心室肥厚和 明显心包积液。虽然前景广阔,但这两种人工智能模型在临床前需要外部验证 执行。在本提案的目标 1 中,我们前瞻性地收集了约 1,012 名晕厥/预发性 ED 患者的数据。 晕厥来验证这两个人工智能模型在检测瓣膜和结构性热病方面的预测准确性, 包括二尖瓣脱垂,使用超声心动图作为我们的金标准。在目标 2 中,我们将评估是否 基线瓣膜性心脏病是严重心脏事件(例如急性心脏病)的独立危险因素 心律失常,30 天时出现晕厥的 ED 患者。 如果经过验证并显示可以准确预测瓣膜和结构性心脏病,这些人工智能模型 通过快速识别需要的患者,可以在改善晕厥急救护理方面发挥重要作用 超声心动图和/或长时间心脏监测。反过来,这将导致加快医疗和手术 降低心脏病发病率和死亡率的治疗。这项名为 SyncopeNet 的研究将有助于改善临床护理 晕厥患者并推进晕厥研究领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marc Probst其他文献

Marc Probst的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marc Probst', 18)}}的其他基金

Practical Approaches to Care in Emergency Syncope (PACES)
紧急晕厥的实用护理方法 (PACES)
  • 批准号:
    10405916
  • 财政年份:
    2021
  • 资助金额:
    $ 50.28万
  • 项目类别:
Practical Approaches to Care in Emergency Syncope (PACES)
紧急晕厥的实用护理方法 (PACES)
  • 批准号:
    10445071
  • 财政年份:
    2021
  • 资助金额:
    $ 50.28万
  • 项目类别:
PACES: Practical Approaches to Care in Emergency Syncope
PACES:紧急晕厥护理的实用方法
  • 批准号:
    10854051
  • 财政年份:
    2021
  • 资助金额:
    $ 50.28万
  • 项目类别:
Practical Approaches to Care in Emergency Syncope (PACES)
紧急晕厥的实用护理方法 (PACES)
  • 批准号:
    10618317
  • 财政年份:
    2021
  • 资助金额:
    $ 50.28万
  • 项目类别:
SYNDICARE: Syncope Decision Aid for Emergency Care
SYNDICARE:晕厥紧急护理决策辅助
  • 批准号:
    9088757
  • 财政年份:
    2016
  • 资助金额:
    $ 50.28万
  • 项目类别:
SYNDICARE: Syncope Decision Aid for Emergency Care
SYNDICARE:晕厥紧急护理决策辅助
  • 批准号:
    9265933
  • 财政年份:
    2016
  • 资助金额:
    $ 50.28万
  • 项目类别:

相似海外基金

Signature Research Project
签名研究项目
  • 批准号:
    10577120
  • 财政年份:
    2023
  • 资助金额:
    $ 50.28万
  • 项目类别:
Brain fluid clearance and misfolded protein dynamics following traumatic brain injury
创伤性脑损伤后脑液清除和错误折叠蛋白质动力学
  • 批准号:
    10740569
  • 财政年份:
    2023
  • 资助金额:
    $ 50.28万
  • 项目类别:
The Biological Cost of External and Internal Resilience Factors in Trauma Survivors
创伤幸存者外部和内部复原因素的生物成本
  • 批准号:
    10748472
  • 财政年份:
    2023
  • 资助金额:
    $ 50.28万
  • 项目类别:
I-CARE: The Effectiveness of a Modular Digital Intervention to Reduce Suicidal Ideation and Emotional Distress during Pediatric Psychiatric Boarding
I-CARE:模块化数字干预对减少儿科精神科寄宿期间的自杀意念和情绪困扰的有效性
  • 批准号:
    10756733
  • 财政年份:
    2023
  • 资助金额:
    $ 50.28万
  • 项目类别:
Leveraging Data to Action: Accelerating Emergency Department OUD Care by Improving Data Access and Infrastructure
利用数据采取行动:通过改善数据访问和基础设施加速急诊科 OUD 护理
  • 批准号:
    10745526
  • 财政年份:
    2023
  • 资助金额:
    $ 50.28万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了