Identifying determinants of rapid structural and/or clinical progression in knee osteoarthritis by quantitative assessment of structural features on radiographs
通过定量评估射线照片上的结构特征来确定膝骨关节炎快速结构和/或临床进展的决定因素
基本信息
- 批准号:10859277
- 负责人:
- 金额:$ 40.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-07 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAdministrative SupplementAlgorithmsAreaBone MarrowBone SpurClinicalClinical TrialsClinical Trials DesignComplexCross-Sectional StudiesDataData SetDegenerative polyarthritisDevelopmentDiseaseEnrollmentEtiologyFrequenciesFutureGoalsGrantHospitalsImageIndividualInterventionJointsKneeKnee OsteoarthritisLesionLongitudinal cohort studyLongitudinal, observational studyMachine LearningMagnetic Resonance ImagingMissionModelingMusculoskeletal DiseasesPainPain MeasurementPain ResearchPatientsPatternPharmaceutical PreparationsPhenotypeProgressive DiseaseReportingResearchRheumatismRisk FactorsSeveritiesSex DifferencesStandardizationStatistical MethodsStructureSynovitisTestingTimeTissuesU-Series Cooperative AgreementsUnited States National Institutes of HealthVisitcohortdata reusedeep learningdeep learning modeldisabilityeffusionfallshigh riskimprovedindividualized medicineinnovationinterestknee painlearning strategynovelparent grantpatient subsetspharmacologicphysically handicappedpreventpsychosocialracial differenceradiologistscreeningsecondary analysisskin disordersocial determinantssymptom treatmentsymptomatic improvement
项目摘要
Osteoarthritis (OA) is the most common musculoskeletal disorder and presents a large societal burden. Knee
pain in patients with knee OA is a leading contributor to physical disability and a major reason for hospital
visits. An improved understanding of the etiology of knee pain has been hampered in part by knee OA being a
multifactorial and progressive disease of the whole joint; consequently, knee pain progression may be the
result of local or regional abnormalities of several different structural features over time. The long-term goal is
to accelerate the development of optimal screening for enrollment into clinical trials to test promising
treatments for symptom improvement. The overall objective in this application is to study the association of
different MRI-based features with the temporal patterns of various knee pain measurements (e.g., knee pain
frequency and severity) in OA. The central hypothesis is that there are some temporal knee pain phenotypes
and various MRI-defined structural features (e.g., bone marrow lesions) are associated with the phenotypes.
This hypothesis is formulated largely based on the preliminary studies, including the Osteoarthritis Initiative
(OAI), the Multicenter Osteoarthritis Study (MOST), the semi-quantitative (SQ) readings, the complex knee
pain measurements in the OAI and MOST studies, and projects on machine/deep learning to accurately
predict SQ readings for MRIs that do not have existing radiologist-derived readings in the OAI and MOST
studies. The central hypothesis will be tested by pursuing two specific aims: 1) identify different temporal knee
pain phenotypes based on all available longitudinal knee pain measurements and the related knee pain risk
factors in the MOST and OAI; and 2) associate the MRI-defined structural features at baseline with the
identified temporal knee pain phenotypes. The research proposed in this application is innovative in several
ways. It considers various definitions of knee pain and the available pain measurement data in the super-
large longitudinal OAI and MOST studies and applies machine learning, deep learning and statistical methods
to identify knee pain phenotypes and associate them with MRI-based factors. This new and substantively
different approach to understanding knee pain is expected to overcome the limitations of existing studies
(e.g., single knee pain measurement-based and cross-sectional studies), thereby opening new horizons for
detecting different temporal knee pain phenotypes and allowing identification of individuals at high risk of
various temporal knee pain phenotypes for more targeted enrollment into clinical trials.
骨关节炎(OA)是最常见的肌肉骨骼疾病,带来了巨大的社会负担。膝盖
膝关节骨关节炎患者的疼痛是造成身体残疾的主要原因,也是住院的主要原因
访问。膝关节 OA 是一种常见的疾病,这在一定程度上阻碍了对膝关节疼痛病因的进一步了解。
全关节的多因素和进行性疾病;因此,膝盖疼痛的进展可能是
随着时间的推移,几种不同结构特征的局部或区域异常的结果。长期目标是
加速开发最佳筛选以进入临床试验以测试有希望的
改善症状的治疗。该应用程序的总体目标是研究关联
不同的基于 MRI 的特征以及各种膝盖疼痛测量的时间模式(例如,膝盖疼痛
OA 中的频率和严重程度)。中心假设是存在一些颞膝关节疼痛表型
各种 MRI 定义的结构特征(例如骨髓病变)与表型相关。
这一假设主要基于包括骨关节炎倡议在内的初步研究
(OAI)、多中心骨关节炎研究 (MOST)、半定量 (SQ) 读数、复杂膝关节
OAI 和 MOST 研究中的疼痛测量以及机器/深度学习项目能够准确地测量疼痛
预测 OAI 和 MOST 中没有现有放射科医生衍生读数的 MRI 的 SQ 读数
研究。将通过追求两个具体目标来检验中心假设:1)识别不同的颞膝
基于所有可用的纵向膝关节疼痛测量和相关膝关节疼痛风险的疼痛表型
MOST 和 OAI 中的因素; 2)将基线时 MRI 定义的结构特征与
确定颞膝关节疼痛表型。本申请提出的研究在几个方面具有创新性
方式。它考虑了膝关节疼痛的各种定义以及超级市场中可用的疼痛测量数据。
大型纵向OAI和MOST研究和应用机器学习、深度学习和统计方法
识别膝盖疼痛表型并将其与基于 MRI 的因素关联起来。这个新的、实质性的
理解膝盖疼痛的不同方法有望克服现有研究的局限性
(例如,基于单膝疼痛测量和横断面研究),从而为
检测不同的颞膝关节疼痛表型并识别高风险人群
各种颞膝关节疼痛表型,以便更有针对性地纳入临床试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY W DURYEA其他文献
JEFFREY W DURYEA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY W DURYEA', 18)}}的其他基金
Identifying determinants of rapid structural and/or clinical progression in knee osteoarthritis by quantitative assessment of structural features on radiographs
通过定量评估射线照片上的结构特征来确定膝骨关节炎快速结构和/或临床进展的决定因素
- 批准号:
10417354 - 财政年份:2022
- 资助金额:
$ 40.2万 - 项目类别:
Identifying determinants of rapid structural and/or clinical progression in knee osteoarthritis by quantitative assessment of structural features on radiographs
通过定量评估射线照片上的结构特征来确定膝骨关节炎快速结构和/或临床进展的决定因素
- 批准号:
10683361 - 财政年份:2022
- 资助金额:
$ 40.2万 - 项目类别:
Healthy knee aging vs. osteoarthritis in three large diverse cohorts: What is the clinical relevance of structural changes seen on radiographs?
三个不同队列中的健康膝关节老化与骨关节炎:X光片上看到的结构变化的临床相关性是什么?
- 批准号:
10096225 - 财政年份:2021
- 资助金额:
$ 40.2万 - 项目类别:
Tracking Treatable Tissues: Change in qMRI Biomarkers and Future Cartilage Loss
追踪可治疗组织:qMRI 生物标志物的变化和未来的软骨损失
- 批准号:
9762584 - 财政年份:2017
- 资助金额:
$ 40.2万 - 项目类别:
Quantitative MRI analysis method for longitudinal assessment of knee OA
膝关节骨关节炎纵向评估的定量MRI分析方法
- 批准号:
7784808 - 财政年份:2010
- 资助金额:
$ 40.2万 - 项目类别:
Quantitative MRI analysis method for longitudinal assessment of knee OA
膝关节骨关节炎纵向评估的定量MRI分析方法
- 批准号:
8215819 - 财政年份:2010
- 资助金额:
$ 40.2万 - 项目类别:
Quantitative MRI analysis method for longitudinal assessment of knee OA
膝关节骨关节炎纵向评估的定量MRI分析方法
- 批准号:
8013530 - 财政年份:2010
- 资助金额:
$ 40.2万 - 项目类别:
相似海外基金
Cloud based neuroimaging analysis for identifying traumatic braininjuries and related changes
基于云的神经影像分析,用于识别创伤性脑损伤和相关变化
- 批准号:
10827676 - 财政年份:2023
- 资助金额:
$ 40.2万 - 项目类别:
Implementing best practices in software design for Network Level Analysis
实施网络级分析软件设计的最佳实践
- 批准号:
10839638 - 财政年份:2022
- 资助金额:
$ 40.2万 - 项目类别:
HEALing LB3P: Profiling Biomechanical, Biological and Behavioral phenotypes
HEALing LB3P:分析生物力学、生物和行为表型
- 批准号:
10415626 - 财政年份:2021
- 资助金额:
$ 40.2万 - 项目类别:
HEALing LB3P: Profiling Biomechanical, Biological and Behavioral phenotypes
HEALing LB3P:分析生物力学、生物和行为表型
- 批准号:
10406064 - 财政年份:2021
- 资助金额:
$ 40.2万 - 项目类别:
Application of Implementation Science approaches to assess the effectiveness of Task-shifted WHO-PEN to address cardio metabolic complications in people living with HIV in Zambia
应用实施科学方法来评估任务转移的 WHO-PEN 解决赞比亚艾滋病毒感染者心脏代谢并发症的有效性
- 批准号:
10817964 - 财政年份:2020
- 资助金额:
$ 40.2万 - 项目类别: