Ultrasmall particle-based solutions for inducing ferroptosis and improving anti-tumor immune responses in cancer
基于超小颗粒的解决方案,用于诱导铁死亡并改善癌症中的抗肿瘤免疫反应
基本信息
- 批准号:10888788
- 负责人:
- 金额:$ 55.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffinityAntitumor ResponseAutomobile DrivingBindingBiologyCD8-Positive T-LymphocytesCancerousCell DeathCell Death InductionCellsCharacteristicsChemicalsCytotoxic agentDataDimensionsDiseaseDoseEncapsulatedExhibitsFluorescent DyesGel ChromatographyGenetic EngineeringGoalsHigh Pressure Liquid ChromatographyHumanImmuneImmune checkpoint inhibitorImmune responseImmunotherapyIn VitroInflammatoryInflammatory ResponseIntravenousInvadedIronLeadLesionLinkLipid PeroxidesMacrophageMalignant NeoplasmsMelanocortin 1 ReceptorMelanoma CellModelingMolecularMusMutationNecrosisOutcomePathway interactionsPharmaceutical PreparationsPhenotypePopulationProcessPropertyResearchResearch DesignSeriesSignal Transduction PathwaySilicon DioxideT-LymphocyteTherapeuticTherapeutic EffectTimeToxic effectTranslationsTransplantationTreatment Efficacyanti-CTLA4anti-PD-1anti-canceranti-cancer therapeuticanti-tumor immune responseanticancer activityantitumor effectaqueouscancer cellcancer immunotherapycancer regressioncancer therapycarcinogenesiscombatcytokinedesignexperimental studyimmune checkpoint blockadeimmune-related adverse eventsimmunoregulationimprovedin vivoinhibitorinsightintravenous administrationmelanomamouse modelnanomaterialsnanoparticlenanotherapeuticnoveloverexpressionparticlepharmacologicprogramsrecruitresponsesmall moleculesynergismtreatment responsetumortumor microenvironmenttumor-immune system interactions
项目摘要
Project Summary: Enormous strides continue to be made in the design of nanoparticles as highly specialized
therapeutics for achieving superior outcomes over standard pharmacological agents, the latter often associated
with significant toxicity that limits treatment efficacy. While cancer immunotherapies have revolutionized the
treatment of disease and shown therapeutic benefits in hard-to-treat cancers, these agents are limited, for
example, by immune-related adverse events and off-target effects in immunosuppressive microenvironments.
Novel, emerging anti-cancer strategies are therefore critically needed to overcome these limitations and improve
durable response rates in combination with immune therapies. One promising strategy exploits the unique “self-
therapeutic” capabilities of the nanomaterials themselves – the treatment of tumors without the need for cytotoxic
drugs. These capabilities are governed by the intrinsic physico-chemical properties of these materials, which can
lead to disruption of signal transduction pathways, cell cross-talk or invasion, and/or induced cell death programs
within the tumor microenvironment (TME) – providing unprecedented opportunities for combating disease. We
have developed specialized ultrasmall fluorescent core-shell silica nanoparticles, Cornell prime dots (C' dots),
with intrinsic therapeutic capabilities enabling a distinct combination of activities that (1) selectively and directly
induce cancer cell death through the iron-dependent mechanism of ferroptosis and (2) modulate immune cells
directly by priming T cells and polarizing macrophages toward a pro-inflammatory phenotype. As CD8+ T cells
are known to also regulate ferroptosis during immunotherapy, such effects are expected to synergize with those
induced by C' dots. A long-term goal of this proposal is to determine critical C' dot physico-chemical parameters
responsible for maximizing responses to these intrinsic therapeutic activities. In Aim I, we will examine the extent
to which changes in the structural properties of PEG-coated C' dots, plain or modified to specifically bind to
melanocortin-1 receptor (MC1-R; a well-established target overexpressed by our syngeneic murine models and
human melanomas), influence therapeutic efficacy in syngeneic melanoma models by modulating ferroptosis
and the tumor microenvironment, in the presence and absence of checkpoint blockade. In Aim II, we will probe
underlying mechanisms driving regulation of immune cell phenotype and/or induction of ferroptosis in vitro. The
successful completion of the project will provide critical insights into (i) key structural parameters modulating the
combined self-therapeutic activities of these particles related to their induction of ferroptosis and priming the
tumor immune microenvironment; (ii) whether critical differences exist in particle characteristics needed to
optimize these distinct activities; (iii) mechanisms underpinning these activities; and (iv) therapeutic strategies
that maximize potent anti-tumor effects in syngeneic melanoma models by administering therapeutic doses of
particles in tandem with checkpoint inhibitors (anti-PD-1 and anti-CTLA-4).
项目摘要:随着高度专业化,纳米颗粒的设计继续取得巨大进步
与标准药物制剂相比,获得更好结果的治疗方法,后者通常与
虽然癌症免疫疗法已经彻底改变了治疗效果,但具有显着的毒性。
治疗疾病并在难以治疗的癌症中显示出治疗益处,但这些药物是有限的,
例如,免疫相关的不良事件和免疫抑制微环境中的脱靶效应。
因此,迫切需要新的、新兴的抗癌策略来克服这些限制并改善
与免疫疗法相结合的持久缓解率是一种有前途的策略,它利用了独特的“自我治疗”。
纳米材料本身的“治疗”能力——无需细胞毒性即可治疗肿瘤
这些能力由这些材料的固有物理化学性质决定,这些性质可以
导致信号转导途径破坏、细胞串扰或入侵、和/或诱导细胞死亡程序
肿瘤微环境(TME)中——为对抗疾病提供了前所未有的机会。
开发了专门的超小型荧光核壳二氧化硅纳米颗粒、康奈尔素点(C'点)、
具有内在的治疗能力,能够实现不同的活动组合:(1) 选择性地、直接地
通过铁依赖性铁死亡机制诱导癌细胞死亡,并 (2) 调节免疫细胞
直接通过启动 T 细胞并将巨噬细胞极化为促炎表型作为 CD8+ T 细胞。
已知在免疫治疗过程中也能调节铁死亡,这种作用预计会与那些作用产生协同作用
该提案的长期目标是确定关键的 C' 点物理化学参数。
在目标 I 中,我们将检查其程度。
PEG 涂层的 C' 点的结构特性发生变化,无论是普通的还是经过修饰的,以特异性结合
黑皮质素-1 受体(MC1-R;我们的同基因小鼠模型过度表达的一个成熟靶标,
人类黑色素瘤),通过调节铁死亡影响同基因黑色素瘤模型的治疗效果
在存在和不存在检查点阻断的情况下,我们将探讨肿瘤微环境。
驱动免疫细胞表型调节和/或体外铁死亡诱导的潜在机制。
该项目的成功完成将为以下方面提供重要见解:(i)调节
这些颗粒的联合自我治疗活性与其诱导铁死亡和启动
(ii) 所需的颗粒特性是否存在关键差异
优化这些不同的活动;(iii) 支持这些活动的机制;以及 (iv) 治疗策略;
通过给予治疗剂量的
颗粒与检查点抑制剂(抗 PD-1 和抗 CTLA-4)联用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michelle S Bradbury其他文献
Michelle S Bradbury的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michelle S Bradbury', 18)}}的其他基金
Molecular Phenotyping and Image-Guidance for Surgical Treatment of High-Risk Prostate Cancer Using Ultrasmall Silica Nanoparticles
使用超小二氧化硅纳米粒子进行高风险前列腺癌手术治疗的分子表型分析和图像引导
- 批准号:
10908927 - 财政年份:2023
- 资助金额:
$ 55.08万 - 项目类别:
Molecular Phenotyping and Image-Guidance for Surgical Treatment of High-Risk Prostate Cancer Using Ultrasmall Silica Nanoparticles
使用超小二氧化硅纳米粒子进行高风险前列腺癌手术治疗的分子表型分析和图像引导
- 批准号:
9973780 - 财政年份:2020
- 资助金额:
$ 55.08万 - 项目类别:
Molecular Phenotyping and Image-Guidance for Surgical Treatment of High-Risk Prostate Cancer Using Ultrasmall Silica Nanoparticles
使用超小二氧化硅纳米粒子进行高风险前列腺癌手术治疗的分子表型分析和图像引导
- 批准号:
10350683 - 财政年份:2020
- 资助金额:
$ 55.08万 - 项目类别:
Ultrasmall particle-based solutions for inducing ferroptosis and improving anti-tumor immune responses in cancer
基于超小颗粒的解决方案,用于诱导铁死亡并改善癌症中的抗肿瘤免疫反应
- 批准号:
10165678 - 财政年份:2020
- 资助金额:
$ 55.08万 - 项目类别:
Ultrasmall particle-based solutions for inducing ferroptosis and improving anti-tumor immune responses in cancer
基于超小颗粒的解决方案,用于诱导铁死亡并改善癌症中的抗肿瘤免疫反应
- 批准号:
10415074 - 财政年份:2020
- 资助金额:
$ 55.08万 - 项目类别:
Ultrasmall particle-based solutions for inducing ferroptosis and improving anti-tumor immune responses in cancer
基于超小颗粒的解决方案,用于诱导铁死亡并改善癌症中的抗肿瘤免疫反应
- 批准号:
10060129 - 财政年份:2020
- 资助金额:
$ 55.08万 - 项目类别:
Molecular Phenotyping and Image-Guidance for Surgical Treatment of High-Risk Prostate Cancer Using Ultrasmall Silica Nanoparticles
使用超小二氧化硅纳米粒子进行高风险前列腺癌手术治疗的分子表型分析和图像引导
- 批准号:
10590649 - 财政年份:2020
- 资助金额:
$ 55.08万 - 项目类别:
MSKCC -Cornell Center for Translation of Cancer Nanomedicines.
MSKCC - 康奈尔大学癌症纳米药物转化中心。
- 批准号:
9751791 - 财政年份:2015
- 资助金额:
$ 55.08万 - 项目类别:
MSKCC -Cornell Center for Translation of Cancer Nanomedicines.
MSKCC - 康奈尔大学癌症纳米药物转化中心。
- 批准号:
8961774 - 财政年份:2015
- 资助金额:
$ 55.08万 - 项目类别:
MSKCC -Cornell Center for Translation of Cancer Nanomedicines.
MSKCC - 康奈尔大学癌症纳米药物转化中心。
- 批准号:
9324181 - 财政年份:2015
- 资助金额:
$ 55.08万 - 项目类别:
相似国自然基金
P3H1通过ATF4/System Xc-轴抑制肾癌铁死亡和抗肿瘤免疫反应的作用及机制研究
- 批准号:82372704
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SLC5A12通过组蛋白乳酸化调控膀胱癌三级淋巴结构削弱抗肿瘤免疫反应
- 批准号:82373337
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
褪黑素通过诱导ICD激活抗肿瘤免疫反应增强HER2阳性乳腺癌靶向治疗敏感性的作用研究
- 批准号:82302981
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用于激活抗肿瘤免疫反应和调控免疫逃逸协同免疫治疗的高分子胶束研究
- 批准号:32371446
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
非折叠蛋白反应对NK细胞亚群和功能的影响及其在机体抗肿瘤免疫应答中的作用和机制
- 批准号:82371748
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
A novel nanobody-based agonist-redirected checkpoint (ARC) molecule, aPD1-Fc-OX40L, for cancer immunotherapy
一种基于纳米抗体的新型激动剂重定向检查点 (ARC) 分子 aPD1-Fc-OX40L,用于癌症免疫治疗
- 批准号:
10580259 - 财政年份:2023
- 资助金额:
$ 55.08万 - 项目类别:
Molecular engineering and systematic evaluation of bispecific aptamers to develop potent and efficacious therapies for the immunomodulation of Non-Small Cell Lung Cancer
双特异性适体的分子工程和系统评估,以开发有效的非小细胞肺癌免疫调节疗法
- 批准号:
10751309 - 财政年份:2023
- 资助金额:
$ 55.08万 - 项目类别:
Synergistic microglial activation and tumor cell killing for improved GBM response
协同小胶质细胞激活和肿瘤细胞杀伤可改善 GBM 反应
- 批准号:
10328499 - 财政年份:2021
- 资助金额:
$ 55.08万 - 项目类别:
Synergistic microglial activation and tumor cell killing for improved GBM response
协同小胶质细胞激活和肿瘤细胞杀伤可改善 GBM 反应
- 批准号:
10579973 - 财政年份:2021
- 资助金额:
$ 55.08万 - 项目类别:
Synergistic microglial activation and tumor cell killing for improved GBM response
协同小胶质细胞激活和肿瘤细胞杀伤可改善 GBM 反应
- 批准号:
10092562 - 财政年份:2021
- 资助金额:
$ 55.08万 - 项目类别: