An integrated microfluidic device for patient-derived micro-organospheres
用于患者来源的微有机球的集成微流体装置
基本信息
- 批准号:10828576
- 负责人:
- 金额:$ 39.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAntineoplastic AgentsArchitectureAreaBiologicalBiopsyCancer BiologyCancer CenterCancer DiagnosticsCellsChemoresistanceClinicClinicalClinical ResearchClinical TrialsCollaborationsColorectal CancerCommercial gradeComplexComputer softwareDevelopmentDevicesDiseaseDisinfectionDisparateDrug ScreeningElectronicsEmulsionsEndocrineEngineeringEnvironmental Risk FactorExcisionFundingGenerationsGeneticGoalsGrowthHeartInstitutional Review BoardsLeadMalignant NeoplasmsManualsMeasuresMedical DeviceMembraneMicrofluidic MicrochipsMicrofluidicsModalityModelingMonitorMultiple MyelomaOilsOrganoidsOutcomePatientsPhasePolymersPopulation HeterogeneityProceduresProcessPublishingPumpRecoveryReportingReproducibilityResistanceSamplingSeriesSiteSmall Business Innovation Research GrantStandardizationSystemTestingTherapeuticTubeUniversitiesValidationXenograft procedureassay developmentcancer clinical trialcancer therapyclinical careclinically actionablecostdesigndiagnostic assaydrug developmentexperienceimprovedinstrumentmalignant breast neoplasmmatrigelmetastatic colorectalminimal riskmultidisciplinarynoveloperationpatient responsepersonalized medicinepolymerizationprecision medicineprecision oncologyprototypestem cellssuccesstreatment response
项目摘要
PROJECT SUMMARY/ABSTRACT
Functional precision oncology holds great potential to improve the current clinical paradigm by using patient-
derived ex vivo systems (e.g., PDXs and organoids) for personalized treatment-specific readouts. However,
presently, these models take long to establish, are not scalable and are costly; such challenges impede their
wide-spread applicability and commercial potential. Therefore, there remains an unmet need to develop novel
functional precision medicine strategies that pair the right therapy to each patient to improve clinical outcomes.
Xilis is answering this call by developing a novel FDA, CLIA and IVDR-compliant medical device that can rapidly
grow micro-organospheres (MOS) – high-fidelity, ex vivo patient avatars. Xilis has developed a proprietary
benchtop MOS generator instrument (MOSgen) to generate MOS based on the following processes: 1)
formation of Matrigel droplet-based MOS “micro-reactors” in oil emulsions from low volume clinical samples (e.g.,
18G biopsies) 2) polymerization of the Matrigel via heat through our unique chip design, 3) sample
demulsification using our proprietary process, where the oil is removed, and the droplets are resuspended in
media for downstream establishment. Although functional, the current MOSgen prototype has disparate, stand-
alone workflows for MOS formation, polymerization and demulsification that need complex tubing, complicated
user interaction, and requires lengthy disinfection procedures, which impedes its use and applicability in clinical
workflows. Thus, in this SBIR Fast-track, our multi-disciplinary team with engineering, biological and
clinical expertise will build an automated, end-to-end, commercial-grade MOSgen instrument that rapidly
generates MOS in a scalable and reproducible manner with minimal risk of contamination. Xilis currently
is engaged with its strategic partner, MD Anderson Cancer Center, and will implement the MOSgen into the
existing clinical workflow to validate its operation. SBIR funding would also bolster Xilis’ collaboration with Mayo
Clinic to enable device validation by supporting the NCI-funded BEAUTY clinical trials. In Phase I, we will develop
a penultimate prototype of our MOSgen instrument, which will integrate the hardware and software workflows.
We have engineered a series of novel serpentine microfluidic chipsets, which we will integrate into our instrument
for an all-in-one solution. We will test the prototype using colorectal cancer samples (leveraging our registered
clinical trial with leading site, MD Anderson) and multiple myeloma samples (from our collaboration with Duke
University). In Phase II, we will build our end-to-end, commercial-grade MOSgen, in compliance with FDA’s QSR
Part 320. This instrument will be automated and easy-to-use, to readily support seamless implementation into
current clinical workflows. To test the MOSgen, we will partner will MD Anderson and Mayo Clinic (subaward)
and integrate our instrument into existing clinical trials to validate its operation. Successful completion will support
the development of a commercial, fully-automated, commercial-grade microfluidic instrument that can streamline
the generation of MOS to enable robust functional precision medicine capabilities.
项目摘要/摘要
功能精度肿瘤学具有巨大的潜力,可以通过使用患者 -
用于个性化治疗的读数的派生的离体系统(例如PDX和类器官)。然而,
目前,这些模型需要很长时间才能扩展,而且代价高昂。这样的挑战阻碍了他们的
广泛的适用性和商业潜力。因此,尚未满足发展小说的需求
功能精确的医学策略,将正确的疗法与每个患者配对以改善临床结果。
Xilis正在通过开发一种新颖的FDA,CLIA和IVDR兼容的医疗设备来接听这个电话,该设备可以迅速
生长的微孔圈(MOS) - 高保真性,离体患者化身。 Xilis已经开发了专有
台式MOS发电机仪器(MOSGEN)基于以下过程生成MOS:1)
来自低体积临床样品的油乳液中基于Matrigel液滴的MOS“微反应器”(例如,
18G活检)2)通过我们独特的芯片设计通过热量将矩阵聚合的聚合,3)样品
使用我们的专有工艺进行拆除,去除油,然后将液滴恢复
下游建立的媒体。尽管功能很强,但当前的Mosgen原型具有不同的,独立的
单独的工作流程,用于MOS组成,聚合和拆除需要复杂的管道,复杂的工作流程
用户互动,需要长时间的消毒程序,这阻碍了其在临床上的使用和适用性
工作流程。在这个SBIR快速轨道中,我们的多学科团队具有工程,生物学和
临床专业知识将建立一种自动,端到端的商业级Mosgen仪器,迅速
以可扩展且可再现的方式生成MOS,污染风险最小。 Xilis目前
与其战略合作伙伴MD Anderson癌症中心互动,并将将MOSGEN实施到
现有的临床工作流程以验证其操作。 SBIR资金还将加强Xilis与Mayo的合作
诊所通过支持NCI资助的美容临床试验来实现设备验证。在第一阶段,我们将发展
MOSGEN仪器的倒数第二个原型,它将整合硬件和软件工作流程。
我们已经设计了一系列新颖的蛇形微流体芯片组,我们将将其集成到我们的仪器中
用于多合一解决方案。我们将使用结直肠癌样品测试原型(利用我们的注册
与领先地点MD Anderson的临床试验)和多个骨髓瘤样品(来自我们与Duke的合作
大学)。在第二阶段,我们将按照FDA的QSR构建我们的端到端商业级Mosgen
第320部分。此仪器将是自动化且易于使用的,可以轻松地支持无缝实现
当前的临床工作流程。为了测试MOSGEN,我们将合作MD Anderson和Mayo Clinic(Subaward)
并将我们的仪器集成到现有的临床试验中,以验证其运作。成功完成将支持
可以简化的商业,全自动,商业级的微流体仪器的开发
MOS的产生可实现强大的功能精确药物功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Aaron Nelson其他文献
Daniel Aaron Nelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于脱氢弯孢霉素骨架的ACLY降解剂的设计、合成及抗肿瘤活性研究
- 批准号:82304312
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于阳离子-π相互作用的“开/关”型纳米光敏剂的光敏活性调控及其抗肿瘤研究
- 批准号:82304434
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载自组装型非核苷类STING激动剂的亚精胺水凝胶用于抗肿瘤免疫治疗及机制研究
- 批准号:82303561
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于PROTAC的选择性AKT1降解剂的设计、合成及抗肿瘤活性研究
- 批准号:82304287
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于PWWP域的NSD2蛋白降解剂的设计、合成与抗肿瘤活性研究
- 批准号:22307132
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms modulating cell identity in regenerative mammalian epithelia
再生哺乳动物上皮细胞身份的调节机制
- 批准号:
10319270 - 财政年份:2021
- 资助金额:
$ 39.97万 - 项目类别:
Mechanisms modulating cell identity in regenerative mammalian epithelia
再生哺乳动物上皮细胞身份的调节机制
- 批准号:
10534207 - 财政年份:2021
- 资助金额:
$ 39.97万 - 项目类别:
Mechanisms modulating cell identity in regenerative mammalian epithelia
再生哺乳动物上皮细胞身份的调节机制
- 批准号:
10386922 - 财政年份:2021
- 资助金额:
$ 39.97万 - 项目类别:
Mechanisms modulating cell identity in regenerative mammalian epithelia
再生哺乳动物上皮细胞身份的调节机制
- 批准号:
10022155 - 财政年份:2019
- 资助金额:
$ 39.97万 - 项目类别:
Structure and Function of Concentrative Nucleoside Transporters
浓缩核苷转运蛋白的结构和功能
- 批准号:
9024572 - 财政年份:2013
- 资助金额:
$ 39.97万 - 项目类别: