Nucleic Acid Purification System
核酸纯化系统
基本信息
- 批准号:10797451
- 负责人:
- 金额:$ 11.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Aberrant DNA MethylationAgingAnimalsArchaeaBacteriaBase Excision RepairsBindingCytosineDNADNA MethylationDNA Repair EnzymesDNA glycosylaseDeaminationDiseaseEnsureEnzymesEpigenetic ProcessExcisionFaceGene ExpressionGenetic DiseasesGenomicsGoalsGuanineHealthHumanIn VitroLearningMalignant NeoplasmsMammalsMediatingMethylationModelingModificationMutationNaturePathway interactionsPlantsPoint MutationPolymerasePost-Translational Protein ProcessingProcessResearchSiteSpecificitySumoylation PathwaySystemTestingThymineUracilVertebratesbasedemethylationenzyme activityepigenetic regulationgenome integrityhuman DNAhuman diseaseinterestnovel therapeutic interventionnucleic acid purificationoxidationrecruitrepair enzymerepaired
项目摘要
An overarching goal of our research is to understand how the base excision repair (BER) pathway maintains
genomic integrity and mediates epigenetic regulation, and how deficiencies in BER impact human health. A
major focus is to discover how DNA glycosylases, which initiate BER, find and excise damaged or modified
forms of 5-methylcytosine (mC). The most abundant modified DNA base in nature, mC is critical for epigenetic
regulation in plants and animals and for restriction modification in archaea and bacteria. However, cytosine
methylation also poses a danger because mC deaminates to T, generating G/T mispairs and C to T mutations
that threaten genomic and epigenetic integrity and causes human diseases including cancer. Countering this
threat are three different types of glycosylases that excise T from G/T mispairs; TDG and MBD4 in mammals
and MIG in archaea and bacteria. While most glycosylases excise bases that are foreign to DNA (e.g., uracil)
these enzymes face the daunting task of removing thymine bases arising by mC deamination but not those in
the vast background of A:T pairs or in polymerase-generated G/T mispairs. Because glycosylase action on
undamaged DNA is mutagenic, the specificity of these G/T glycosylases is critical, yet it is poorly defined. The
current paradigm holds that specificity involves recognition of the mismatched guanine. We will rigorously test
this model and investigate other potential specificity factors, to define the mechanism of G/T glycosylase
specificity. Our studies will reveal features of TDG and MBD4 that may account for inefficient repair of mC
deamination, a potential cause of point mutations implicated in cancer and genetic disease. BER also functions
in epigenetic regulation by serving to “erase” mC through active DNA demethylation. An established pathway
in vertebrates involves oxidation of mC by a TET enzyme to give three oxy-mC products (hmC, fC, caC),
excision of fC or caC by TDG, and subsequent BER to yield unmodified C. Our studies will address major gaps
in the understanding of this essential pathway, by defining how TDG recognizes and removes fC and caC and
how it is recruited to sites of DNA demethylation. We are also interested in how post-translational modifications
regulate BER, and our current focus is on determining how TDG is regulated by SUMO modification. TDG is
sumoylated at a single site, and it has a SUMO-interacting motif (SIM) that binds SUMO domains, including an
intramolecular SUMO. While TDG is considered a model for understanding how sumoylation can regulate
enzyme activity, many fundamental questions remain. Our studies will reveal how sumoylation alters TDG
activity and how the SIM mediates these effects. We will also define mechanisms of SUMO conjugation and
deconjugation and learn how the SIM modulates these processes. An in vitro conjugation-deconjugation
system will be used to test the paradigm that sumoylation of TDG is required to regulate its product release
and ensure faithful completion of TDG-initiated BER. Results of these studies will inform how BER deficiencies
impact human health and could suggest new therapeutic approaches for treating diseases including cancer.
我们研究的总体目标是了解基本惊喜维修(BER)途径如何保持
基因组完整性并介导表观遗传调节,以及BER的缺陷如何影响人类健康。一个
主要重点是发现启动BER,查找和消除受损或修饰的DNA糖基酶如何
5-甲基胞嘧啶(MC)的形式。自然界中最丰富的修饰DNA碱基,MC对于表观遗传至关重要
植物和动物的调节,以及用于古细菌和细菌的限制修饰。但是,胞嘧啶
甲基化也构成了危险
这威胁到基因组和表观遗传完整性,并引起包括癌症在内的人类疾病。反对这个
威胁是三种不同类型的糖基酶,这些糖基酶经历了g/t遗失的T;哺乳动物中的TDG和MBD4
和古细菌和细菌中的MIG。虽然大多数糖基酶消除了DNA属于DNA的碱(例如,uracil)
这些酶面临着去除MC死亡产生的胸腺素基础的艰巨任务,而不是
a:t对或聚合酶生成的g/t的巨大背景。因为糖基酶对
未损坏的DNA是诱变的,这些G/T糖基化酶的特异性至关重要,但定义很差。这
当前的范式认为,特异性涉及对不匹配的鸟嘌呤的认识。我们将严格测试
该模型并研究其他潜在特异性因子,以定义G/T糖基化酶的机制
特异性。我们的研究将揭示TDG和MBD4的特征,这可能解释了MC的效率低下
脱氨酸,这是癌症和遗传疾病中实施的点突变的潜在原因。 BER也起作用
在表观遗传学调节中,通过活跃的DNA脱甲基化来“擦除” MC。已建立的途径
在脊椎动物中,涉及通过TET酶氧化MC以得到三种氧MC产物(HMC,FC,CAC),
通过TDG切除FC或CAC,随后的BER产生未修饰的C。我们的研究将解决主要差距
在理解这一基本途径时,通过定义TDG如何识别和删除FC和CAC以及
如何将其招募到DNA脱甲基化的位置。我们也对翻译后的修改感兴趣
调节BER,我们目前的重点是确定TDG如何通过Sumo修饰调节。 TDG是
在一个位点上进行的sumoyped,它具有相扑基序(SIM),该基元(SIM)结合了Sumo域,包括一个
分子内相扑。虽然TDG被认为是了解如何调节sumoylation的模型
酶活性,仍然存在许多基本问题。我们的研究将揭示Sumoylation如何改变TDG
活动以及SIM如何介导这些效果。我们还将定义相扑结合的机制和
解耦合并了解SIM调制这些过程如何调节。体外施工解释
系统将用于测试范例,即需要TDG的Sumoylation来调节其产品释放
并确保忠实地完成TDG发起的BER。这些研究的结果将告知您如何缺陷
影响人类健康,并可能提出用于治疗包括癌症的疾病的新治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex C Drohat其他文献
Alex C Drohat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex C Drohat', 18)}}的其他基金
Mechanisms of BER in Genomic Integrity and Epigenetic Regulation
BER 在基因组完整性和表观遗传调控中的机制
- 批准号:
10390444 - 财政年份:2020
- 资助金额:
$ 11.39万 - 项目类别:
Mechanisms of BER in Genomic Integrity and Epigenetic Regulation
BER 在基因组完整性和表观遗传调控中的机制
- 批准号:
10605583 - 财政年份:2020
- 资助金额:
$ 11.39万 - 项目类别:
Mechanisms of BER in Genomic Integrity and Epigenetic Regulation
BER 在基因组完整性和表观遗传调控中的机制
- 批准号:
10726878 - 财政年份:2020
- 资助金额:
$ 11.39万 - 项目类别:
Mechanisms of BER in Genomic Integrity and Epigenetic Regulation
BER 在基因组完整性和表观遗传调控中的机制
- 批准号:
10606489 - 财政年份:2020
- 资助金额:
$ 11.39万 - 项目类别:
Structure and mechanism of CpG specific DNA glycosylases
CpG特异性DNA糖基化酶的结构和机制
- 批准号:
7931177 - 财政年份:2009
- 资助金额:
$ 11.39万 - 项目类别:
Structure and mechanism of CpG specific DNA glycosylases
CpG特异性DNA糖基化酶的结构和机制
- 批准号:
7175459 - 财政年份:2005
- 资助金额:
$ 11.39万 - 项目类别:
Structure and mechanism of CpG specific DNA glycosylases
CpG特异性DNA糖基化酶的结构和机制
- 批准号:
7146414 - 财政年份:2005
- 资助金额:
$ 11.39万 - 项目类别:
Structure and Mechanism of CpG specific DNA glycosylases
CpG 特异性 DNA 糖基化酶的结构和机制
- 批准号:
8535460 - 财政年份:2005
- 资助金额:
$ 11.39万 - 项目类别:
Structure and Mechanism of CpG specific DNA glycosylases
CpG 特异性 DNA 糖基化酶的结构和机制
- 批准号:
8536824 - 财政年份:2005
- 资助金额:
$ 11.39万 - 项目类别:
相似国自然基金
纳米稀土CeO2在土壤-动物体系中的形态转化、累积分布及毒性作用机制
- 批准号:41877500
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
miR-34c在保护高糖诱导的VSMCs早衰并延缓糖尿病血管老化与钙化中的作用及机制
- 批准号:81770833
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
缝隙连接蛋白26在老年性耳聋中的表达及其甲基化作用机制研究
- 批准号:81500795
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
研究细胞/组织器官衰老与机体衰老关联机制的条件性敲入小鼠模型的建立与分析
- 批准号:81571374
- 批准年份:2015
- 资助金额:120.0 万元
- 项目类别:面上项目
改善年龄老化导致下肢新生血管生成障碍的实验研究
- 批准号:81070257
- 批准年份:2010
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
The genome integrity and epigenome of sperm from men with recurrent pregnancy loss
反复流产男性精子的基因组完整性和表观基因组
- 批准号:
10556688 - 财政年份:2023
- 资助金额:
$ 11.39万 - 项目类别:
Development of an epigenetic clock that predicts age-impaired or age-unimpaired cognitive performance
开发表观遗传时钟来预测年龄受损或年龄未受损的认知表现
- 批准号:
10510390 - 财政年份:2022
- 资助金额:
$ 11.39万 - 项目类别:
Differentially methylated gene regions (DMRs) induced by doxorubicin in heart: significance and clinical application
阿霉素诱导心脏差异甲基化基因区(DMR):意义及临床应用
- 批准号:
10463850 - 财政年份:2021
- 资助金额:
$ 11.39万 - 项目类别:
Differentially methylated gene regions (DMRs) induced by doxorubicin in heart: significance and clinical application
阿霉素诱导心脏差异甲基化基因区(DMR):意义及临床应用
- 批准号:
10308134 - 财政年份:2021
- 资助金额:
$ 11.39万 - 项目类别: