Targeting APOBEC3A-induced genetic heterogeneity and drug resistance in bladder cancer
靶向 APOBEC3A 诱导的膀胱癌遗传异质性和耐药性
基本信息
- 批准号:10798615
- 负责人:
- 金额:$ 51.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:Bar CodesCell LineCellsCessation of lifeCharacteristicsClinical TrialsCytidineCytidine DeaminaseDNA Double Strand BreakDataDeaminationDecision MakingDevelopmentDiagnosisDrug resistanceEvolutionFGFR3 geneFamilyFutureGenesGeneticGenetic HeterogeneityGenetic InductionGenomicsGoalsHumanIn VitroInduced MutationKnowledgeLaboratoriesMalignant Epithelial CellMalignant NeoplasmsMalignant neoplasm of urinary bladderMediatingMediatorMethodsModelingMutagenesisMutationOrganoidsPathway interactionsPatient-Focused OutcomesPatientsPhenotypePhosphotransferasesPhylogenetic AnalysisPolymeraseProto-Oncogene Proteins c-aktPublic HealthPublishingRelapseReportingResearchResistanceResistance developmentRoleSamplingSignal TransductionSpecific qualifier valueSystemSystemic TherapyTestingTherapeuticTransitional Cell CarcinomaTumor BankUnited StatesUrotheliumWorkXenograft procedurebiomarker identificationcancer cellclinical biomarkersclinical riskco-clinical trialde novo mutationimprovedimproved outcomein vivoinhibitorinnovationinsertion/deletion mutationnovelnovel strategiesnovel therapeutic interventionpharmacologicprecision medicinepressurepreventrefractory cancerrepairedresponse biomarkerstandard of caresuccesstargeted treatmenttherapeutically effectivetherapy resistanttumortumor heterogeneity
项目摘要
PROJECT SUMMARY/ ABSTRACT
Every five minutes, a new patient is diagnosed with urothelial carcinoma (UC) in the United States, resulting in
the death of 18,000 patients annually. Nearly all patients with advanced UC will develop resistance to systemic
treatment. Intratumoral heterogeneity (ITH) is a major contributor to treatment resistance by increasing the
chance for resistant subclones to emerge. However, genetic ITH is currently not druggable and not considered
in therapeutic decision-making, thus worsening drug-resistant patient phenotypes. The fundamental knowledge
gap regarding genetic drivers of ITH impedes the development of effective therapeutic strategies to prevent and
eliminate drug resistance. Our long-term goal is to define targetable mechanisms of ITH and treatment resistance
to develop an effective precision strategy to achieve cures in patients with advanced UC. The overall objective
is to define targetable mechanisms by which APOBEC3A-mediated ITH drives drug resistance and identify
strategies to eliminate UC cells with APOBEC3A activity. Our central hypothesis is that APOBEC3A-induced
cytidine deamination drives genetic ITH leading to the emergence of therapy-resistant UC clones and, in
so doing, simultaneously creating unique targetable vulnerabilities. This hypothesis was formulated based
on our published work and strong preliminary data showing that APOBEC3A expression in isogenic UC cell lines
and patient-derived organoids drives genetic ITH. We found that APOBEC3A-induced, de novo mutations in the
PIKC3A-AKT-MTOR signaling hub drive the resistance to erdafitinib, an FGFR3-inhibitor (FGFR3i) approved for
UC treatment. Our preliminary data also revealed that APOBEC3A-induced double-stranded DNA breaks are
preferentially repaired by the microhomology-mediated end-joining (MMEJ) pathway and that targeting the
critical MMEJ mediator, polymerase theta (Polθ), is synthetically lethal in APOBEC3A-expressing clones. The
rationale is that identifying targetable mechanisms by which APOBEC3A-induced ITH drives drug resistance and
developing strategies to eliminate APOBEC3A-expressing UC cells will improve cure rates for patients. We will
test our hypothesis by pursuing two specific Aims. Aim 1: Identify targetable mechanisms by which APOBEC3A-
induced mutational ITH drives treatment resistance in UC. Aim 2: Identify synthetic lethal strategies to target UC
tumors with APOBEC3A-induced DNA double-strand breaks. Aim 1 will use longitudinal clonal barcoding and in
vitro and in vivo laboratory evolution to identify targetable APOBEC3A-driven kinase hubs that mediate FGFR3i
resistance and validate them in patient samples from FGFR3i clinical trials. Aim 2 will use genetic and
pharmacologic inhibition of Polθ in APOBEC3A-expressing UC models and a co-clinical trial of patient-derived
UC organoids and xenografts to identify clinical biomarkers of response to APOBEC3A-MMEJ synthetic lethality.
The approach is conceptually and technically innovative, creating a new paradigm for eliminating treatment-
resistant cancers. Impact: Completion of the proposed research will establish APOBEC3A as a genetic driver of
treatment resistance and enable synthetic lethal approaches to increase cure rates.
项目摘要/摘要
每五分钟,一名新患者在美国被诊断出患有尿路上皮癌(UC),导致
每年18,000名患者死亡。几乎所有具有晚期UC的患者都会产生对系统性的抗性
治疗。肿瘤内异质性(ITH)是通过增加治疗耐药性的主要因素
耐药子克隆出现的机会。但是,遗传ITH目前不可吸毒,也不考虑
在热决策中,因此令人担忧的是耐药的患者表型。基本知识
关于ITH遗传驱动因素的缺口阻碍了有效的治疗策略来预防和
消除耐药性。我们的长期目标是定义ITH的目标机制和治疗耐药性
制定有效的精确策略以实现晚期UC患者的治疗方法。总体目标
是为了定义apobec3a介导的ITH驱动耐药性并识别的可靶向机制
消除具有APOBEC3A活性的UC细胞的策略。我们的中心假设是apobec3a诱导的
胞苷死亡驱动基因ITH导致耐药UC克隆的出现,并在
因此,仅创建独特的目标漏洞。该假设是基于
关于我们发表的工作和强大的初步数据,表明apobec3a在等源性UC细胞系中的表达
患者衍生的类器官驱动基因ITH。我们发现apobec3a引起的,从头突变
PIKC3A-AKT-MTOR信号轮毂驱动对Erdafitinib的阻力,Erdafitinib是批准的FGFR3抑制剂(FGFR3I)
UC治疗。我们的初步数据还显示,Apobec3a诱导的双链DNA断裂是
通过微学介导的最终连接(MMEJ)途径优先修复
临界MMEJ介体,聚合酶theta(polθ),在表达ApoBec3a的克隆中是致命的。这
理由是识别ApoBec3a诱导的ITH驱动耐药性和
制定消除表达APOBEC3A的UC细胞的策略将改善患者的治疗率。我们将
通过追求两个具体目标来检验我们的假设。 AIM 1:确定APOBEC3A-的目标机制
诱导的突变ITH驱动UC中的治疗耐药性。目标2:确定靶向UC的合成致命策略
具有APOBEC3A诱导的DNA双链断裂的肿瘤断裂。 AIM 1将使用纵向克隆条形码和
体内和体内实验室进化,以鉴定介导FGFR3I的靶向APOBEC3A驱动的激酶轮毂
在FGFR3I临床试验中的患者样品中抗性并验证它们。 AIM 2将使用遗传和
在表达APOBEC3A的UC模型中对POLθ的药理抑制作用和患者衍生的共同临床试验
UC类器官和异种移植物,以鉴定对APOBEC3A-MMEJ合成致死性反应的临床生物标志物。
该方法在概念上和技术上都是创新的,创造了一种消除治疗的新范式 -
抗性癌症。影响:拟议研究的完成将确定APOBEC3A作为遗传驱动
治疗耐药性并实现合成的致命方法,以提高治愈率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bishoy Morris Faltas其他文献
Bishoy Morris Faltas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
系统性红斑狼疮粒-单核-树突细胞系中PLSCR1介导的I型干扰素诱导表达特征及调控机制研究
- 批准号:82300805
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
马口鱼精原干细胞系基因编辑与借腹怀胎研究
- 批准号:32373130
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
食蟹猴原始内胚层干细胞系的建立、谱系发生机制及谱系示踪
- 批准号:32270862
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
斜带石斑鱼精原干细胞系构建及细胞因子维持其自我更新的机制研究
- 批准号:32273132
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
干扰BMP信号通路逆转EGFR突变型肺腺癌继发耐药细胞系干性提高EGFR TKIs和放疗敏感性的研究
- 批准号:82272752
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
相似海外基金
Molecular dissection of extrachromosomal DNA formation, development, and evolution
染色体外 DNA 形成、发育和进化的分子解剖
- 批准号:
10640520 - 财政年份:2023
- 资助金额:
$ 51.6万 - 项目类别:
Deciphering the molecular mechanism of ineffective erythropoiesis in MDS-5q
破译MDS-5q无效红细胞生成的分子机制
- 批准号:
10773217 - 财政年份:2023
- 资助金额:
$ 51.6万 - 项目类别:
Systems Approaches to Understanding the Impact of Cell-Cell Fusion on Therapeutic Resistance
了解细胞间融合对治疗耐药性影响的系统方法
- 批准号:
10607123 - 财政年份:2023
- 资助金额:
$ 51.6万 - 项目类别:
Vesicle Epitope Transcript sequencing (VET-seq): Droplet-based Multiomic Profiling Platform for Single Vesicle Analysis
囊泡表位转录本测序 (VET-seq):用于单囊泡分析的基于液滴的多组学分析平台
- 批准号:
10613257 - 财政年份:2023
- 资助金额:
$ 51.6万 - 项目类别:
Chromatin regulators of stemness and therapy resistance in rhabdomyosarcoma
横纹肌肉瘤干性和治疗耐药性的染色质调节因子
- 批准号:
10622041 - 财政年份:2023
- 资助金额:
$ 51.6万 - 项目类别: