Quantitative Imaging Clinical Validation Center at Moffitt Cancer Center
莫菲特癌症中心定量成像临床验证中心
基本信息
- 批准号:10706028
- 负责人:
- 金额:$ 88.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-22 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsArtificial IntelligenceArtificial Intelligence platformBenchmarkingBenignBiological MarkersBiopsyBiostatistical MethodsBloodBreastCancer CenterCancer DetectionClassificationClinicalClinical DataCollaborationsColonCommunicationComplementComprehensive Cancer CenterCutaneousDataDedicationsDevelopmentDiagnosisDiagnosticDiscriminationDiseaseEarly Detection Research NetworkEarly DiagnosisElectronic Medical Records and Genomics NetworkEnvironmentFundingGoalsGuidelinesHousingImageIndividualIndolentInstitutionLungMachine LearningMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of lungMammographyMeasurementMedical ImagingModalityModelingMutationNoduleOperative Surgical ProceduresOrganOvaryPancreasPerformancePlayPopulationPrediction of Response to TherapyProcessProductivityProstateRecurrenceResearchResectedResourcesRiskRisk MarkerRoleSamplingScreening for cancerShapesSiteSubcategorySubgroupSumTechniquesTechnologyTextureTissuesValidationVascularizationWomanbioimagingbreast densitybreast imagingcancer biomarkerscancer diagnosisclinical imagingdata repositorydeep learningdiagnostic biomarkerexperienceimage archival systemimaging biomarkerimprovedinterestlearning strategylung cancer screeninglung imagingmalignant breast neoplasmnon-invasive imagingnovelovertreatmentpatient populationpersonalized cancer careprognosticationquantitative imagingradiomicsrepositoryrisk predictionscreeningstandard of caresuccesstreatment responsetumorworking group
项目摘要
PROJECT SUMMARY/ABSTRACT
An overarching goal of cancer screening is to detect cancer at an early stage while it is localized, treatable, and
curable. However, cancer screening is associated with false positives, high rates of indeterminate findings,
overdiagnosis, and overtreatment, which are serious limitations that need to be addressed to improve early
detection efforts. Because medical imaging is a key component of early detection for many cancers, quantitative
imaging/radiomics can provide biomarkers to address many of these limitations with early detection. Our group,
Quantitative Imaging Clinical Validation Center at Moffitt Cancer Center (QICVC-MCC), helped pioneer image
biomarker approaches leveraged in the prior funding cycle to create the first and only EDRN Clinical Validation
Center (CVC) dedicated to the validation of image biomarkers. For breast cancer, we validated several breast
density-type risk markers and diagnostic models in women classified as BI-RADS 4, noting the three
subcategories within this classification were strong diagnostic markers, and constructed a bio-image repository
for this subgroup. For lung cancer, we conducted extensive studies applying conventional radiomics for risk
prediction, discrimination between malignant and benign nodules, distinguishing between indolent and
aggressive lung cancers, predicting tumor mutations, and predicting treatment response. In this renewal, we will
expand our CVC from validated conventional feature-based radiomics as a benchmark to compare end-to-end
deep learning (DL) methods, expand to other populations, and implement AI platforms for analyzing breast, lung,
and other organ site images. In breast imaging (Aim 1), we will expand our efforts from parametric modeling to
machine learning/DL for improved risk, early detection, and diagnostic predictions and continue our data
repository developments. In lung imaging (Aim 2), we will expand our efforts from lung cancer screening to
incidentally detected nodules and surgically resected early-stage lung cancer. Additionally, in Aim 3 we will seek
out additional opportunities within the EDRN to conduct studies of image biomarkers in other organ sites beyond
breast and lung (e.g., prostate, pancreas, and cutaneous) to address emerging Network objectives. The EDRN
has proven that it is greater than the sum of the individual projects. As such, in Aim 4 we propose to build a
repository for the housing and sharing of images, algorithms, radiomics, clinical data, and information on
biospecimens. In this CVC renewal, we will systematically validate radiomic features and novel image metrics
in the early detection of cancer. This research is significant because such information may be able to complement
existing clinical guidelines and lead to new strategies to apply noninvasive image biomarkers. The research of
the QICVC-MCC is performed at an NCI-Designated Comprehensive Cancer Center, which is an outstanding
environment to conduct such studies given the access to large patient populations and outstanding resources,
and the clinical setting to deploy such biomarkers for improved personalized cancer care.
项目概要/摘要
癌症筛查的首要目标是在癌症处于局部、可治疗和早期阶段时发现癌症。
可治愈的。然而,癌症筛查与假阳性、不确定结果的高发生率、
过度诊断和过度治疗是严重的局限性,需要解决以早期改善
检测工作。由于医学成像是许多癌症早期检测的关键组成部分,因此定量
成像/放射组学可以提供生物标志物,通过早期检测来解决许多这些限制。我们组,
莫菲特癌症中心 (QICVC-MCC) 的定量成像临床验证中心帮助开创了影像
在之前的融资周期中利用生物标志物方法创建第一个也是唯一一个 EDRN 临床验证
中心(CVC)致力于图像生物标志物的验证。对于乳腺癌,我们验证了几种乳腺癌
被分类为 BI-RADS 4 的女性的密度型风险标记和诊断模型,注意到这三个
该分类中的子类别是强有力的诊断标记,并构建了生物图像存储库
对于这个子组。对于肺癌,我们应用传统放射组学进行了广泛的风险研究
预测、区分恶性和良性结节、区分惰性和惰性结节
侵袭性肺癌,预测肿瘤突变,并预测治疗反应。在这次更新中,我们将
将我们的 CVC 从经过验证的传统基于特征的放射组学中扩展出来,作为端到端比较的基准
深度学习(DL)方法,扩展到其他人群,并实施人工智能平台来分析乳房、肺部、
和其他器官部位图像。在乳腺成像(目标 1)中,我们将把工作范围从参数化建模扩展到
机器学习/深度学习以提高风险、早期检测和诊断预测并继续我们的数据
存储库的开发。在肺部成像(目标2)方面,我们将把工作范围从肺癌筛查扩展到
偶然发现结节并手术切除早期肺癌。此外,在目标 3 中,我们将寻求
在 EDRN 内提供更多机会对其他器官部位的图像生物标志物进行研究
乳房和肺部(例如前列腺、胰腺和皮肤),以解决新出现的网络目标。欧洲发展研究网络
事实证明,它大于各个项目的总和。因此,在目标 4 中,我们建议建立一个
用于存储和共享图像、算法、放射组学、临床数据和信息的存储库
生物样本。在本次 CVC 更新中,我们将系统地验证放射组学特征和新颖的图像指标
在癌症的早期发现中。这项研究很重要,因为这些信息可能能够补充
现有的临床指南并导致应用非侵入性图像生物标志物的新策略。研究的
QICVC-MCC 在 NCI 指定的综合癌症中心进行,该中心是一个出色的
鉴于可以获得大量患者群体和丰富的资源,因此有条件进行此类研究,
以及部署此类生物标志物以改善个性化癌症护理的临床环境。
项目成果
期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Breast density analysis of digital breast tomosynthesis.
- DOI:10.1038/s41598-023-45402-x
- 发表时间:2023-10-31
- 期刊:
- 影响因子:4.6
- 作者:Heine, John;Fowler, Erin E. E.;Weinfurtner, R. Jared;Hume, Emma;Tworoger, Shelley S.
- 通讯作者:Tworoger, Shelley S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN J HEINE其他文献
JOHN J HEINE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN J HEINE', 18)}}的其他基金
Automated Quantitative Measures of Breast Density
乳房密度的自动定量测量
- 批准号:
8625722 - 财政年份:2013
- 资助金额:
$ 88.16万 - 项目类别:
Automated Quantitative Measures of Breast Density
乳房密度的自动定量测量
- 批准号:
8436915 - 财政年份:2013
- 资助金额:
$ 88.16万 - 项目类别:
An Automated System for Breast Cancer Biomarker Analysis
用于乳腺癌生物标志物分析的自动化系统
- 批准号:
7271911 - 财政年份:2006
- 资助金额:
$ 88.16万 - 项目类别:
An Automated System for Breast Cancer Biomarker Analysis
用于乳腺癌生物标志物分析的自动化系统
- 批准号:
7477736 - 财政年份:2006
- 资助金额:
$ 88.16万 - 项目类别:
An Automated System for Breast Cancer Biomarker Analysis
用于乳腺癌生物标志物分析的自动化系统
- 批准号:
7886709 - 财政年份:2006
- 资助金额:
$ 88.16万 - 项目类别:
An Automated System for Breast Cancer Biomarker Analysis
用于乳腺癌生物标志物分析的自动化系统
- 批准号:
7139399 - 财政年份:2006
- 资助金额:
$ 88.16万 - 项目类别:
An Automated System for Breast Cancer Biomarker Analysis
用于乳腺癌生物标志物分析的自动化系统
- 批准号:
7669090 - 财政年份:2006
- 资助金额:
$ 88.16万 - 项目类别:
NORMAL IMAGE RECOGNITION TECHNICS FOR DIGITAL MAMMOGRAMS
数字乳房X线照片的正常图像识别技术
- 批准号:
6173746 - 财政年份:1999
- 资助金额:
$ 88.16万 - 项目类别:
相似国自然基金
基于“人工智能算法+高精度遥感数据”的棉花表型信息识别及解析
- 批准号:32360436
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于人工智能和多模态信息预测复杂下肢动脉病变术后不良事件的算法机制研究
- 批准号:82370499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向智能电网用户侧的智能优化调度和人工智能算法安全研究
- 批准号:62373297
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
人工智能算法嵌入街头官僚决策的行为效应及其认知触发机制研究
- 批准号:72304110
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人工智能算法辅助高通量纳米等离子芯片用于前列腺癌尿液外泌体多元标志物的检测
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Discovery-Driven Mathematics and Artificial Intelligence for Biosciences and Drug Discovery
用于生物科学和药物发现的发现驱动数学和人工智能
- 批准号:
10551576 - 财政年份:2023
- 资助金额:
$ 88.16万 - 项目类别:
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
- 批准号:
10637391 - 财政年份:2023
- 资助金额:
$ 88.16万 - 项目类别:
A breakthrough mobile phone technology that aids in early detection of COPD
突破性手机技术有助于早期发现慢性阻塞性肺病
- 批准号:
10760409 - 财政年份:2023
- 资助金额:
$ 88.16万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 88.16万 - 项目类别: