CRCNS US-German Research Proposal: Efficient representations of social knowledge structures for learning from a computational, neural and psychiatric perspective (RepSocKnow)
CRCNS 美德研究提案:从计算、神经和精神病学角度学习的社会知识结构的有效表示 (RepSocKnow)
基本信息
- 批准号:10688109
- 负责人:
- 金额:$ 16.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-22 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAddressBehaviorBehavioralBenchmarkingBrainCalibrationCategoriesCellsClinicalCodeCognitiveCollaborationsComputer ModelsDecision MakingDimensionsDiseaseDoctor of PhilosophyDorsalEvaluationExhibitsFunctional Magnetic Resonance ImagingGerman populationGermanyGoalsGrainHumanImpairmentIndividualIndividual AdjustmentKnowledgeLearningMedialModelingNational Institute of Mental HealthNeuronsNeurosciencesNew YorkPatternPersonal SatisfactionPersonalityPersonality DisordersPopulationPrefrontal CortexProbabilityPsychiatryPsychologyResearchResearch Domain CriteriaResearch ProposalsShapesSideSignal TransductionSiteSocial AdjustmentSocial EnvironmentSocial FunctioningSocial InteractionSpecific qualifier valueStereotypingStructureSymptomsSystemTestingUncertaintyUniversitiesWashingtonautism spectrum disorderclinical practiceclinically relevantcognitive rigiditycomputational neurosciencecomputer frameworkexpectationexperimental studyflexibilityimprovedindividuals with autism spectrum disorderinterestlearning strategymedical schoolsmental statementalizationmid-career facultyneuralneuropsychiatric disordernovelpreferenceprofessorprogramsrecruitskillssocialsocial deficitssocial learningsocial neurosciencesocial spacesymptomatology
项目摘要
PROJECT DESCRIPTION
US-German Research Proposal for Collaboration in Computational Neuroscience:
Efficient representations of social knowledge structures for learning from a computational, neural
and psychiatric perspective (RepSocKnow)
US-side PI: Prof. Gabriela Rosenblau, Ph.D., Assistant Professor, Department of Psychology, The George
Washington University, 2115 G Street NW, Washington, DC 20052
German-side PI: Prof. Christoph W. Korn, Ph.D., Assistant Professor & PI Emmy-Noether Group, Section
Social Neuroscience, Department of General Psychiatry, University of Heidelberg, Vossstraße 4, 69115
Heidelberg, Germany
Consultant 1: Prof. Daniela Schiller, Ph.D., Associate Professor, Department of Psychiatry, Department
of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison
Ave, New York 10029, NY
Consultant 2: Jan Gläscher, Ph.D., PI Bernstein Research Group, Institute for Systems Neuroscience,
University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
1. Aims and hypotheses
This is a resubmission of our last year's CRCNS proposal, which received good and very good scores from
reviewers. Reviewers were excited about the general neuro-computational approach that builds on the
complementary skills of the PIs. In this revision, we address the reviewers' requests for clearer descriptions
of the planed experiments and analyses. Importantly, our new proposal has direct relevance for clinical
practice. By leveraging ideas from computational psychiatry [1–4] and from the Research Domain Criteria
(RDoC; e.g., [5, 6]), we aim to apply our neuro-computational approach to improve the understanding of
core social deficits shared by many pervasive neuro-psychiatric disorders. The general goal of this proposal
is to establish comprehensive—and clinically relevant—neuro-computational models of aberrant learning
in social contexts via behavioral and functional magnetic resonance imaging (fMRI) experiments.
Learning about others is crucial for successful social interactions [7]. Social interactions strongly
predict wellbeing [8]. Different types of impairments in social functioning accompany a variety of clinical
conditions and constitute core symptoms of Autism Spectrum Disorders (ASD) [9–11] and Personality
Disorders with a Borderline pattern qualifier (BPD) [12–16]. We harness our neuro-computational approach
to investigate how social knowledge structures shape—and in turn are shaped by—learning about others.
The mechanisms underlying knowledge representations and learning that we propose in our computational
modeling approach are not “social” per se and we deem it a strength that they can be applied to learning
across various (non-)social domains.
Here, we focus on social learning to specify commonalities and differences between healthy
individuals and individuals with marked social deficits associated with ASD or BPD. While these two
clinical groups probably both employ overly rigid social knowledge structures, they exhibit different types
of malfunctioning: ASD are characterized by under-mentalizing, i.e., insufficient inferences about mental
states of others—possibly due to poor or unspecific social knowledge[17–19]. In contrast, BPD show over-
mentalizing and overly negative interpretations of others' personality or intentions[12, 13]. Our novel
neuro-computational framework can improve the understanding social malfunctioning along dimensional
and categorical psychiatric criteria of ASD and BPD.
We aim to test and refine computational models that formalize adequate strategies for acquiring
and employing social knowledge structures during learning. Our models offer normative perspectives on
social learning by specifying how ideal agents could learn in our controlled but ecologically valid tasks.
Thereby, we can quantify how much humans—particularly clinical populations characterized by pervasive
social deficits—deviate from computationally specified “optimal” benchmark strategies. In conjunction,
this project aims to reveal the neural computations underlying the representation of social knowledge
structures and their flexible deployment during learning. The project addresses three specific aims:
项目描述
美国 - 德国计算神经科学合作的研究建议:
社会知识结构的有效表示,用于从计算,神经学习
和精神科视角(Repsocknow)
美国PI:George心理学系助理教授Gabriela Rosenblau教授
华盛顿大学,2115 G街西北,华盛顿特区,20052年
德国人PI:Christoph W. Korn教授,博士,助理教授和PI Emmy-Noether Group,部分
海德堡大学普通精神病学系社会神经科学,沃斯特拉斯大学4,69115
德国海德堡
顾问1:Daniela Schiller教授,博士,精神病学系副教授,系
神经科学和弗里德曼脑研究所,西奈山伊坎医学院,1470年麦迪逊
大街,纽约10029,纽约
顾问2:JanGläscher博士,PI Bernstein研究小组,系统神经科学研究所
大学医学中心汉堡 - 埃潘多夫,德国汉堡52号Martinistrasse 52
1。目标和假设
这是我们去年CRCNS提案的重新提交,该提案获得了良好的得分
评论者。审稿人对基于该方法的一般神经计算方法感到兴奋
PIS的完全技能。在此修订中,我们解决了审阅者的要求更清晰的描述请求
重要的是,我们的新建议与临床有直接相关
实践。通过利用计算精神病学[1-4]和研究领域标准的思想
(RDOC;例如[5,6]),我们旨在应用我们的神经计算方法来提高对
许多普遍的神经精神疾病共享的核心社会缺陷。该提议的一般目标
是为了建立综合且在临床上相关的NEURO计算模型异常学习模型
在社会环境中,通过行为和功能磁共振成像(fMRI)实验。
了解他人对于成功的社会互动至关重要[7]。社交互动强烈
预测健康[8]。社会功能住宿中不同类型的损害各种临床
疾病和构成自闭症谱系障碍的核心症状(ASD)[9-11]和个性
具有边界模式预选赛(BPD)的疾病[12-16]。我们利用我们的神经计算方法
调查社会知识结构如何形成 - 而又是由他人塑造的。
我们在计算中提出的知识表征和学习的基础机制
建模方法本身不是“社会”,我们认为它们可以应用于学习的优势
在各种(非)社会领域。
在这里,我们专注于社会学习,以指定健康之间的共同点和差异
与ASD或BPD相关的具有明显社会缺陷的个人和个人。而这两个
临床组可能都采用过度严格的社会知识结构,他们暴露了不同的类型
出现故障:ASD的特征是不足,即对心态的推断不足
他人的状态 - 可能是由于贫穷或特定的社会知识[17-19]。相比之下,BPD显示过多
对他人的性格或意图的心理和过于负面解释[12,13]。我们的小说
神经计算框架可以改善沿维度的社会故障的理解
和ASD和BPD的分类精神病标准。
我们旨在测试和完善计算模型,以正式化适当的策略
并在学习过程中采用社会知识结构。我们的模型提供了正常的观点
通过指定理想代理如何在我们受控但生态有效的任务中学习的社会学习。
因此,我们可以量化多少人 - 尤其是以普遍性为特征的临床人群
社交定义 - 从计算指定的“最佳”基准策略中删除。结合
该项目旨在揭示社会知识表示的神经计算
在学习过程中结构及其灵活的部署。该项目针对三个具体目标:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriela Rosenblau其他文献
Gabriela Rosenblau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriela Rosenblau', 18)}}的其他基金
CRCNS US-German Research Proposal: Efficient representations of social knowledge structures for learning from a computational, neural and psychiatric perspective (RepSocKnow)
CRCNS 美德研究提案:从计算、神经和精神病学角度学习的社会知识结构的有效表示 (RepSocKnow)
- 批准号:
10612154 - 财政年份:2022
- 资助金额:
$ 16.23万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 16.23万 - 项目类别:
Consultative Physical Therapy: A Physical Activity and Exercise Implementation Strategy in Parkinson's
咨询物理治疗:帕金森病的身体活动和锻炼实施策略
- 批准号:
10565287 - 财政年份:2023
- 资助金额:
$ 16.23万 - 项目类别:
A Culturally-Adapted Multicomponent Teaching Kitchen Intervention for Low-Income Latino Adults
针对低收入拉丁裔成年人的文化适应多成分厨房教学干预
- 批准号:
10723878 - 财政年份:2023
- 资助金额:
$ 16.23万 - 项目类别:
The Neural Mechanisms Underlying Categorical Decision Making
分类决策背后的神经机制
- 批准号:
10750000 - 财政年份:2023
- 资助金额:
$ 16.23万 - 项目类别:
Leveraging artificial intelligence methods and electronic health records for pediatric pharmacovigilance
利用人工智能方法和电子健康记录进行儿科药物警戒
- 批准号:
10750074 - 财政年份:2023
- 资助金额:
$ 16.23万 - 项目类别: