Anatomical Modeling to Improve the Precision of Image Guided Liver Ablation
解剖建模提高图像引导肝脏消融的精度
基本信息
- 批准号:10686184
- 负责人:
- 金额:$ 33.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAlgorithmsAnatomic ModelsAnatomyBiomechanicsCessation of lifeClinicalComputer softwareDataDedicationsDiagnosisElasticityElementsEligibility DeterminationEnsureExcisionGoalsImageIncidenceInflammationInterventionInterventional ImagingLaboratoriesLiverLiver neoplasmsLocal TherapyLocationMagnetic ResonanceMalignant neoplasm of liverMapsMetastatic Neoplasm to the LiverMethodsModalityModelingMolecular ConformationMonitorMorphologic artifactsNormal tissue morphologyOperative Surgical ProceduresPatientsPhaseProceduresProgression-Free SurvivalsPublishingRecurrenceResidual NeoplasmSecond Primary CancersSeriesSurvival RateTechnologyTestingThermal Ablation TherapyTimeTissue ModelTissuesTractionTreatment EfficacyTumor TissueWaterWorkX-Ray Computed Tomographybiomechanical modelcurative treatmentsefficacy evaluationimage guidedimage registrationimaging probeimprovedinnovationliver ablationmathematical modelpost interventionrandomized, clinical trialsresponsestandard of caresuccesstooltumortumor ablationtumor progression
项目摘要
Primary and secondary liver cancers are increasing in incidence and are collectively responsible for over
1 million deaths per year worldwide. Among the curative treatments available for liver cancers, surgical resection
is considered the standard of care. Unfortunately, less than 20% of patients are eligible for such resection at the
time of the diagnosis. Image-guided percutaneous thermal ablation (PTA) has become a widely utilized option
for patients not eligible for surgery with local control success rates ranging from 55% to 85% (4-6).
In order to achieve optimal results following PTA, rates of residual tumor or recurrence should be
minimized (6, 8), which can be achieved by providing adequate minimal ablation margins around the tumor. To
meet this goal, it is critical to have high-quality intra-procedurally imaging that offers information in respect precise
definition of extent of the target tumor, confirmation of ablation probe placement at the target tumor(s), and
accurate ablation margins assessment. Currently, there are no commercially available tools that enable an
accurate method for tumor mapping and ablation assessment while taking in consideration biomechanical
conformational changes associated with the ablation therapy.
Based in our preliminary work, we hypothesize that local tumor control following ablation of liver cancers
will be improved with the application of a dedicated anatomical linear elastic biomechanical model for treatment
guidance and efficacy assessment by enabling accurate identification and targeting of the tumor and providing
intra-procedural assessment of the ablation, respectively. This hypothesis will be tested through three specific
aims. Firstly, we will optimize the anatomical modeling liver ablation guidance in the RayStation Platform by
validating the accuracy of the linear elastic biomechanical models of the liver for the application of mapping the
tumor defined on the pre-interventional images onto the intra-procedural images obtained just prior to ablation;
Secondly, we will evaluate the impact of this model on local tumor control following liver ablation by conducting
a phase II randomized clinical trial; Finally, we will optimize the biomechanical model to enable modeling of the
local changes in the tumor and surrounding normal tissue resulting from the ablation.
We believe that the integration of accurate, precise, and efficient biomechanical modeling tools to
determine the tumor location at the time of ablation and to monitor the ablation margin will improve local tumor
control rates in patients with liver cancers, potentially improving overall survival rates. The ability to perform
deformable image registration to map the tumor, identified on pre-intervention imaging, in the presence of
artifacts from the ablation probe and with little to no contrast within the liver presents a significant challenge to
most intensity-based algorithms. The use of a biomechanical-based model in this application is poised to make
a significant impact, potentially enabling local control for the 20% of patients who fail this therapy. The integration
of this technology into the RayStation platform ensures that this technology is widely available to patients.
原发性和继发性肝癌的发病率不断增加,共同导致了超过
全球每年有 100 万人死亡。在肝癌的治疗方法中,手术切除
被认为是护理标准。不幸的是,只有不到 20% 的患者有资格接受这种切除术。
诊断时间。图像引导经皮热消融(PTA)已成为广泛使用的选择
对于不适合手术的患者,局部控制成功率范围为 55% 至 85% (4-6)。
为了在 PTA 后获得最佳结果,残余肿瘤或复发率应
最小化 (6, 8),这可以通过在肿瘤周围提供足够的最小消融边缘来实现。到
为了实现这一目标,拥有高质量的程序内成像至关重要,该成像可以提供精确的信息
定义目标肿瘤的范围,确认消融探针在目标肿瘤上的放置,以及
准确的消融边缘评估。目前,还没有商用工具可以实现
考虑生物力学的同时进行肿瘤测绘和消融评估的准确方法
与消融治疗相关的构象变化。
根据我们的初步工作,我们假设肝癌消融后局部肿瘤控制
通过应用专用的解剖线弹性生物力学模型进行治疗将得到改善
通过准确识别和靶向肿瘤并提供指导和疗效评估
分别对消融进行术中评估。这个假设将通过三个具体的测试来检验
目标。首先,我们将优化RayStation平台中的解剖建模肝脏消融指导:
验证肝脏线弹性生物力学模型的准确性,用于绘制肝脏图
将介入前图像上定义的肿瘤转移到消融前获得的术中图像上;
其次,我们将通过进行肝脏消融后评估该模型对局部肿瘤控制的影响
II 期随机临床试验;最后,我们将优化生物力学模型以实现对
消融引起的肿瘤和周围正常组织的局部变化。
我们相信,准确、精确、高效的生物力学建模工具的集成可以
消融时确定肿瘤位置并监测消融余量将改善局部肿瘤
肝癌患者的控制率,有可能提高总体生存率。执行能力
可变形图像配准以绘制肿瘤图,在干预前成像中识别,在存在的情况下
来自消融探针的伪影以及肝脏内几乎没有对比度对
大多数基于强度的算法。在此应用中使用基于生物力学的模型有望使
显着的影响,有可能使 20% 治疗失败的患者得到局部控制。整合
将该技术引入 RayStation 平台可确保患者广泛使用该技术。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Study Protocol COVER-ALL: Clinical Impact of a Volumetric Image Method for Confirming Tumour Coverage with Ablation on Patients with Malignant Liver Lesions.
- DOI:10.1007/s00270-022-03255-3
- 发表时间:2022-12
- 期刊:
- 影响因子:2.9
- 作者:Lin, Yuan-Mao;Paolucci, Iwan;Anderson, Brian M.;O'Connor, Caleb S.;Rigaud, Bastien;Briones-Dimayuga, Maria;Jones, Kyle A.;Brock, Kristy K.;Fellman, Bryan M.;Odisio, Bruno C.
- 通讯作者:Odisio, Bruno C.
Intraprocedural Versus Initial Follow-up Minimal Ablative Margin Assessment After Colorectal Liver Metastasis Thermal Ablation: Which One Better Predicts Local Outcomes?
结直肠肝转移热消融后术中与初始随访最小消融边缘评估:哪一种更好地预测局部结果?
- DOI:10.1097/rli.0000000000001023
- 发表时间:2024
- 期刊:
- 影响因子:6.7
- 作者:Lin,Yuan-Mao;Paolucci,Iwan;AlbuquerqueMarquesSilva,Jessica;O'Connor,CalebS;Fellman,BryanM;Jones,AaronK;Kuban,JoshuaD;Huang,StevenY;Metwalli,ZeyadA;Brock,KristyK;Odisio,BrunoC
- 通讯作者:Odisio,BrunoC
Image-Guided Ablation for Colorectal Liver Metastasis: Principles, Current Evidence, and the Path Forward.
- DOI:10.3390/cancers13163926
- 发表时间:2021-08-04
- 期刊:
- 影响因子:5.2
- 作者:Lin YM;Paolucci I;Brock KK;Odisio BC
- 通讯作者:Odisio BC
Definitions of Computer-Assisted Surgery and Intervention, Image-Guided Surgery and Intervention, Hybrid Operating Room, and Guidance Systems: Strasbourg International Consensus Study.
- DOI:10.1097/as9.0000000000000021
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Giménez M;Gallix B;Costamagna G;Vauthey JN;Moche M;Wakabayashi G;Bale R;Swanström L;Futterer J;Geller D;Verde JM;García Vazquez A;Boškoski I;Golse N;Müller-Stich B;Dallemagne B;Falkenberg M;Jonas S;Riediger C;Diana M;Kvarnström N;Odisio BC;Serra E;Overduin C;Palermo M;Mutter D;Perretta S;Pessaux P;Soler L;Hostettler A;Collins T;Cotin S;Kostrzewa M;Alzaga A;Smith M;Marescaux J
- 通讯作者:Marescaux J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristy Brock其他文献
Kristy Brock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristy Brock', 18)}}的其他基金
Enhanced Biomechanical Modeling of the Breast for Womens Health
增强乳房生物力学模型以促进女性健康
- 批准号:
10356348 - 财政年份:2022
- 资助金额:
$ 33.09万 - 项目类别:
Enhanced Biomechanical Modeling of the Breast for Womens Health
增强乳房生物力学模型以促进女性健康
- 批准号:
10636790 - 财政年份:2022
- 资助金额:
$ 33.09万 - 项目类别:
Anatomical Modeling to Improve the Precision of Image Guided Liver Ablation
解剖建模提高图像引导肝脏消融的精度
- 批准号:
9815803 - 财政年份:2019
- 资助金额:
$ 33.09万 - 项目类别:
Anatomical Modeling to Improve the Precision of Image Guided Liver Ablation
解剖建模提高图像引导肝脏消融的精度
- 批准号:
10242684 - 财政年份:2019
- 资助金额:
$ 33.09万 - 项目类别:
Optimization and Evaluation of Anatomical Models of Liver Radiation Response
肝脏辐射反应解剖模型的优化与评估
- 批准号:
10188461 - 财政年份:2018
- 资助金额:
$ 33.09万 - 项目类别:
Optimization and Evaluation of Anatomical Models of Liver Radiation Response
肝脏辐射反应解剖模型的优化与评估
- 批准号:
10443572 - 财政年份:2018
- 资助金额:
$ 33.09万 - 项目类别:
Dynamic multi-organ anatomical models for hypofractionated RT design and delivery
用于大分割放疗设计和实施的动态多器官解剖模型
- 批准号:
7771627 - 财政年份:2008
- 资助金额:
$ 33.09万 - 项目类别:
Dynamic multi-organ anatomical models for hypofractionated RT design and delivery
用于大分割放疗设计和实施的动态多器官解剖模型
- 批准号:
8015987 - 财政年份:2008
- 资助金额:
$ 33.09万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Extending Reach, Accuracy, and Therapeutic Capabilities: A Soft Robot for Peripheral Early-Stage Lung Cancer
扩大范围、准确性和治疗能力:用于周围早期肺癌的软机器人
- 批准号:
10637462 - 财政年份:2023
- 资助金额:
$ 33.09万 - 项目类别:
Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
- 批准号:
10711521 - 财政年份:2023
- 资助金额:
$ 33.09万 - 项目类别:
Brain-wide Neuronal Circuit Mapping with X-ray Nano-Holography
利用 X 射线纳米全息术绘制全脑神经元回路
- 批准号:
10877549 - 财政年份:2023
- 资助金额:
$ 33.09万 - 项目类别:
Data-Driven Automation of Patient-Specific Finite Element Modeling for TAVR
TAVR 患者特定有限元建模的数据驱动自动化
- 批准号:
10386122 - 财政年份:2022
- 资助金额:
$ 33.09万 - 项目类别:
Open Software Platform for Data-Driven Image-Guided Robotic Interventions
用于数据驱动图像引导机器人干预的开放软件平台
- 批准号:
10608711 - 财政年份:2022
- 资助金额:
$ 33.09万 - 项目类别: