Enhanced Biomechanical Modeling of the Breast for Womens Health
增强乳房生物力学模型以促进女性健康
基本信息
- 批准号:10356348
- 负责人:
- 金额:$ 65.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-10 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdipose tissueAnatomyAnisotropyBackBehaviorBiomechanicsBreastCharacteristicsChest wall structureClothingDataDevelopmentDiagnosisDiagnosticDiagnostic ImagingEngineeringGoalsGrantHumanIndividualKnowledgeLiteratureLocationMalignant NeoplasmsMammaplastyMammary Gland ParenchymaMastectomyMedicalModelingMotionMovementOperative Surgical ProceduresOutcomeOutcome MeasurePathologistPatient EducationPatientsPerformancePhysiciansPhysicsPhysiologicalPopulationPropertyQuality of lifeRecoveryResearchStructureSupport SystemSurgeonSystemTestingThree-dimensional analysisTissue ModelTissuesTraining and EducationTranslationsUncertaintyVisionWomen&aposs HealthWorkbasebiomechanical modelclinical translationdesignimprovedinnovationmalignant breast neoplasmmultidisciplinarymultimodalitypreventprimary outcomeshared decision makingsimulationthree-dimensional modelingtooltumor
项目摘要
As biomechanical modeling of the breast is integral to predicting tumor location across multimodal
diagnostic imaging and during surgery, surgical planning, generating simulations for physician and patient
education, and brassiere and clothing design for optimal breast support, advances in model accuracy have the
potential to significantly improve women's health and quality of life. Despite the growing use of breast
biomechanical models for different applications, there are persistent knowledge gaps in both the anatomical and
biomechanical literature that prevent an accurate model from being developed and deployed to patient-specific
applications. Accurate biomechanical models are needed for tracking cancer in diagnostic imaging and surgery.
However, the accuracy of biomechanical models is sensitive to the geometrical and structural features used to
describe the anatomical features and the constitutive parameters used to describe the behavior of the tissues.
For example, small alterations in the stiffness of the various breast tissue properties can displace tissues by
more than 10 mm. Thus, thorough characterization of the constitutive properties of individual breast structures
are necessary to obtain precise predictions of tissue motion. Furthermore, in the absence of precise knowledge
of anatomical geometrical and structural features, biomechanical models have placed an overemphasis on the
constitutive parameters of the breast tissue.
The long-term goal of our research is to develop an accurate biomechanical model of the breast that
transforms the applications of breast modeling for both population models and patient-specific applications. Our
vision is to improve the model so that it becomes a reliable and useful tool in the diagnosis and management of
breast cancer, surgeon education and training, patient education for better shared decision making, and clothing
design, especially in the post mastectomy recovery period.
Our present human breast tissue biomechanical model represents the state of the art, as it is based on
actual 3D analyses. However, it represents a first step, as clinical translation remains limited by insufficient
information about the structural and biomechanical characteristics of the fascial support system and its
relationship to the adipose and glandular breast structures in the broader population. Thus, we hypothesize that
the accuracy of the biomechanical model may be improved by determining the anatomical and biomechanical
characteristics of the fascial support system of the breast, understanding the sensitivity of the patient-specific
parameters across the population, and validating the translation of these models, with their inherent
uncertainties, into the patient-specific setting. Our multi-disciplinary team of breast reconstructive surgeons,
engineers, medical physicists, and pathologists are uniquely poised to perform this innovative research leading
to the development of a high-fidelity biomechanical model of the human breast that is capable of reproducing its
behavior, both in general and in a patient specific sense.
由于乳房的生物力学建模对于跨多模式预测肿瘤位置至关重要
诊断成像和手术期间、手术计划、为医生和患者生成模拟
教育、胸罩和服装设计以实现最佳乳房支撑、模型准确性的进步
显着改善妇女健康和生活质量的潜力。尽管乳房的使用越来越多
针对不同应用的生物力学模型,在解剖学和生物力学方面都存在持续的知识差距
生物力学文献阻碍了精确模型的开发和部署到特定患者
应用程序。在诊断成像和手术中追踪癌症需要准确的生物力学模型。
然而,生物力学模型的准确性对用于生物力学模型的几何和结构特征很敏感。
描述解剖特征和用于描述组织行为的构成参数。
例如,各种乳房组织特性的刚度的微小变化可以使组织移位
超过10毫米。因此,全面表征个体乳房结构的构成特性
对于获得组织运动的精确预测是必要的。此外,在缺乏准确知识的情况下
考虑到解剖几何和结构特征,生物力学模型过分强调了
乳腺组织的构成参数。
我们研究的长期目标是开发精确的乳房生物力学模型
改变了乳房建模在群体模型和患者特定应用中的应用。我们的
愿景是改进模型,使其成为诊断和管理疾病的可靠且有用的工具
乳腺癌、外科医生教育和培训、患者教育以更好地共同决策以及服装
设计,特别是在乳房切除术后恢复期。
我们目前的人体乳腺组织生物力学模型代表了最先进的技术,因为它基于
实际 3D 分析。然而,这只是第一步,因为临床转化仍然受到不足的限制。
有关筋膜支撑系统及其结构和生物力学特征的信息
与更广泛人群中的脂肪和腺体乳房结构的关系。因此,我们假设
通过确定解剖学和生物力学模型可以提高生物力学模型的准确性
乳房筋膜支撑系统的特点,了解患者特定的敏感性
整个人群的参数,并验证这些模型的翻译及其固有的
不确定性,进入患者特定环境。我们的多学科乳房重建外科医生团队,
工程师、医学物理学家和病理学家以独特的方式进行这项领先的创新研究
开发出能够再现其乳房结构的高保真生物力学模型
行为,无论是一般意义上的还是患者特定意义上的行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristy Brock其他文献
Kristy Brock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristy Brock', 18)}}的其他基金
Enhanced Biomechanical Modeling of the Breast for Womens Health
增强乳房生物力学模型以促进女性健康
- 批准号:
10636790 - 财政年份:2022
- 资助金额:
$ 65.1万 - 项目类别:
Anatomical Modeling to Improve the Precision of Image Guided Liver Ablation
解剖建模提高图像引导肝脏消融的精度
- 批准号:
9815803 - 财政年份:2019
- 资助金额:
$ 65.1万 - 项目类别:
Anatomical Modeling to Improve the Precision of Image Guided Liver Ablation
解剖建模提高图像引导肝脏消融的精度
- 批准号:
10686184 - 财政年份:2019
- 资助金额:
$ 65.1万 - 项目类别:
Anatomical Modeling to Improve the Precision of Image Guided Liver Ablation
解剖建模提高图像引导肝脏消融的精度
- 批准号:
10242684 - 财政年份:2019
- 资助金额:
$ 65.1万 - 项目类别:
Optimization and Evaluation of Anatomical Models of Liver Radiation Response
肝脏辐射反应解剖模型的优化与评估
- 批准号:
10188461 - 财政年份:2018
- 资助金额:
$ 65.1万 - 项目类别:
Optimization and Evaluation of Anatomical Models of Liver Radiation Response
肝脏辐射反应解剖模型的优化与评估
- 批准号:
10443572 - 财政年份:2018
- 资助金额:
$ 65.1万 - 项目类别:
Dynamic multi-organ anatomical models for hypofractionated RT design and delivery
用于大分割放疗设计和实施的动态多器官解剖模型
- 批准号:
7771627 - 财政年份:2008
- 资助金额:
$ 65.1万 - 项目类别:
Dynamic multi-organ anatomical models for hypofractionated RT design and delivery
用于大分割放疗设计和实施的动态多器官解剖模型
- 批准号:
8015987 - 财政年份:2008
- 资助金额:
$ 65.1万 - 项目类别:
相似国自然基金
YTHDC1调控棕色脂肪组织大小、发育和能量代谢的作用机制研究
- 批准号:32371198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
糖尿病脂肪组织中SIRT3表达降低进而上调外泌体miR-146b-5p促进肾小管脂毒性的机制研究
- 批准号:82370731
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于ADPN-Cer轴的柑橘黄酮调控能量负平衡奶牛脂肪组织脂解的分子机制
- 批准号:32302767
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Acvrl1调控脂肪组织巨噬细胞M1/M2极化改善肥胖的机制研究
- 批准号:82300973
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ANGPTLs基因及其蛋白表达水平调控内脏脂肪组织影响健康衰老表型的前瞻性队列研究
- 批准号:82373661
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10707354 - 财政年份:2022
- 资助金额:
$ 65.1万 - 项目类别:
The Role of Sensory Neurons Innervating Internal Organs
感觉神经元支配内脏器官的作用
- 批准号:
10504106 - 财政年份:2022
- 资助金额:
$ 65.1万 - 项目类别:
The Role of Sensory Neurons Innervating Internal Organs
感觉神经元支配内脏器官的作用
- 批准号:
10685444 - 财政年份:2022
- 资助金额:
$ 65.1万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10556825 - 财政年份:2022
- 资助金额:
$ 65.1万 - 项目类别: