Enhanced Biomechanical Modeling of the Breast for Womens Health
增强乳房生物力学模型以促进女性健康
基本信息
- 批准号:10356348
- 负责人:
- 金额:$ 65.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-10 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdipose tissueAnatomyAnisotropyBackBehaviorBiomechanicsBreastCharacteristicsChest wall structureClothingDataDevelopmentDiagnosisDiagnosticDiagnostic ImagingEngineeringGoalsGrantHumanIndividualKnowledgeLiteratureLocationMalignant NeoplasmsMammaplastyMammary Gland ParenchymaMastectomyMedicalModelingMotionMovementOperative Surgical ProceduresOutcomeOutcome MeasurePathologistPatient EducationPatientsPerformancePhysiciansPhysicsPhysiologicalPopulationPropertyQuality of lifeRecoveryResearchStructureSupport SystemSurgeonSystemTestingThree-dimensional analysisTissue ModelTissuesTraining and EducationTranslationsUncertaintyVisionWomen&aposs HealthWorkbasebiomechanical modelclinical translationdesignimprovedinnovationmalignant breast neoplasmmultidisciplinarymultimodalitypreventprimary outcomeshared decision makingsimulationthree-dimensional modelingtooltumor
项目摘要
As biomechanical modeling of the breast is integral to predicting tumor location across multimodal
diagnostic imaging and during surgery, surgical planning, generating simulations for physician and patient
education, and brassiere and clothing design for optimal breast support, advances in model accuracy have the
potential to significantly improve women's health and quality of life. Despite the growing use of breast
biomechanical models for different applications, there are persistent knowledge gaps in both the anatomical and
biomechanical literature that prevent an accurate model from being developed and deployed to patient-specific
applications. Accurate biomechanical models are needed for tracking cancer in diagnostic imaging and surgery.
However, the accuracy of biomechanical models is sensitive to the geometrical and structural features used to
describe the anatomical features and the constitutive parameters used to describe the behavior of the tissues.
For example, small alterations in the stiffness of the various breast tissue properties can displace tissues by
more than 10 mm. Thus, thorough characterization of the constitutive properties of individual breast structures
are necessary to obtain precise predictions of tissue motion. Furthermore, in the absence of precise knowledge
of anatomical geometrical and structural features, biomechanical models have placed an overemphasis on the
constitutive parameters of the breast tissue.
The long-term goal of our research is to develop an accurate biomechanical model of the breast that
transforms the applications of breast modeling for both population models and patient-specific applications. Our
vision is to improve the model so that it becomes a reliable and useful tool in the diagnosis and management of
breast cancer, surgeon education and training, patient education for better shared decision making, and clothing
design, especially in the post mastectomy recovery period.
Our present human breast tissue biomechanical model represents the state of the art, as it is based on
actual 3D analyses. However, it represents a first step, as clinical translation remains limited by insufficient
information about the structural and biomechanical characteristics of the fascial support system and its
relationship to the adipose and glandular breast structures in the broader population. Thus, we hypothesize that
the accuracy of the biomechanical model may be improved by determining the anatomical and biomechanical
characteristics of the fascial support system of the breast, understanding the sensitivity of the patient-specific
parameters across the population, and validating the translation of these models, with their inherent
uncertainties, into the patient-specific setting. Our multi-disciplinary team of breast reconstructive surgeons,
engineers, medical physicists, and pathologists are uniquely poised to perform this innovative research leading
to the development of a high-fidelity biomechanical model of the human breast that is capable of reproducing its
behavior, both in general and in a patient specific sense.
由于乳房的生物力学建模是预测跨多模式的肿瘤位置不可或缺的
诊断成像以及手术,手术计划,为医师和患者生成模拟
教育,胸罩和服装设计,可用于最佳乳房支持,模型准确性的进步具有
显着改善妇女的健康和生活质量的潜力。尽管乳房的使用越来越多
用于不同应用的生物力学模型,解剖学和
生物力学文献防止精确模型被开发和部署到患者特定
申请。在诊断成像和手术中追踪癌症需要准确的生物力学模型。
但是,生物力学模型的准确性对用于的几何和结构特征敏感
描述用于描述组织行为的解剖学特征和本构参数。
例如,各种乳腺组织特性的刚度的较小改变可以通过
超过10毫米。因此,彻底表征单个乳房结构的本构特性
对于获得组织运动的精确预测是必要的。此外,在没有精确知识的情况下
关于解剖学几何和结构特征,生物力学模型已过分强调
乳腺组织的组成型参数。
我们研究的长期目标是开发乳房的准确生物力学模型
改变乳房建模在人群模型和患者特定应用中的应用。我们的
愿景是改善模型,以便成为诊断和管理的可靠且有用的工具
乳腺癌,外科医生教育和培训,患者教育以更好地共享决策和服装
设计,尤其是在乳房切除术后恢复期间。
我们目前的人类乳腺组织生物力学模型代表了艺术的状态,因为它是基于
实际的3D分析。但是,这代表了第一步,因为临床翻译仍然受到不足的限制
有关筋膜支撑系统及其结构和生物力学特征及其的信息
与更广泛的人群中的脂肪和腺乳腺结构的关系。因此,我们假设
通过确定解剖学和生物力学,可以提高生物力学模型的准确性
乳房筋膜支撑系统的特征,了解患者特异性的敏感性
人群之间的参数,并验证这些模型的翻译及其固有的
不确定性,进入特定于患者的环境。我们的乳房重建外科医生的多学科团队,
工程师,医学物理学家和病理学家唯一准备进行这项创新的研究领先
为了发展人类乳房的高保真生物力学模型,该模型能够繁殖其
一般而言,行为在特定意义上。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristy Brock其他文献
Kristy Brock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristy Brock', 18)}}的其他基金
Enhanced Biomechanical Modeling of the Breast for Womens Health
增强乳房生物力学模型以促进女性健康
- 批准号:
10636790 - 财政年份:2022
- 资助金额:
$ 65.1万 - 项目类别:
Anatomical Modeling to Improve the Precision of Image Guided Liver Ablation
解剖建模提高图像引导肝脏消融的精度
- 批准号:
9815803 - 财政年份:2019
- 资助金额:
$ 65.1万 - 项目类别:
Anatomical Modeling to Improve the Precision of Image Guided Liver Ablation
解剖建模提高图像引导肝脏消融的精度
- 批准号:
10686184 - 财政年份:2019
- 资助金额:
$ 65.1万 - 项目类别:
Anatomical Modeling to Improve the Precision of Image Guided Liver Ablation
解剖建模提高图像引导肝脏消融的精度
- 批准号:
10242684 - 财政年份:2019
- 资助金额:
$ 65.1万 - 项目类别:
Optimization and Evaluation of Anatomical Models of Liver Radiation Response
肝脏辐射反应解剖模型的优化与评估
- 批准号:
10188461 - 财政年份:2018
- 资助金额:
$ 65.1万 - 项目类别:
Optimization and Evaluation of Anatomical Models of Liver Radiation Response
肝脏辐射反应解剖模型的优化与评估
- 批准号:
10443572 - 财政年份:2018
- 资助金额:
$ 65.1万 - 项目类别:
Dynamic multi-organ anatomical models for hypofractionated RT design and delivery
用于大分割放疗设计和实施的动态多器官解剖模型
- 批准号:
7771627 - 财政年份:2008
- 资助金额:
$ 65.1万 - 项目类别:
Dynamic multi-organ anatomical models for hypofractionated RT design and delivery
用于大分割放疗设计和实施的动态多器官解剖模型
- 批准号:
8015987 - 财政年份:2008
- 资助金额:
$ 65.1万 - 项目类别:
相似国自然基金
脂肪组织新型内分泌因子的鉴定及功能研究
- 批准号:82330023
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
脂肪干细胞外泌体miRNA-299a-3p调控巨噬细胞Thbs1缓解脂肪组织衰老的机制研究
- 批准号:82301753
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管周围脂肪组织TRPV1通道通过脂联素调控肥胖相关高血压的机制研究
- 批准号:82300500
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
糖尿病脂肪组织中SIRT3表达降低进而上调外泌体miR-146b-5p促进肾小管脂毒性的机制研究
- 批准号:82370731
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
CXCL1/CXCR2信号轴上调Bcl-2促进筋膜定植巨噬细胞迁移在皮下脂肪组织原位再生中的机制研究
- 批准号:82360615
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10707354 - 财政年份:2022
- 资助金额:
$ 65.1万 - 项目类别:
The Role of Sensory Neurons Innervating Internal Organs
感觉神经元支配内脏器官的作用
- 批准号:
10504106 - 财政年份:2022
- 资助金额:
$ 65.1万 - 项目类别:
The Role of Sensory Neurons Innervating Internal Organs
感觉神经元支配内脏器官的作用
- 批准号:
10685444 - 财政年份:2022
- 资助金额:
$ 65.1万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10556825 - 财政年份:2022
- 资助金额:
$ 65.1万 - 项目类别: