Improving the Efficacy of Allogeneic Cell Therapies of Cancer
提高癌症同种异体细胞疗法的疗效
基本信息
- 批准号:10686219
- 负责人:
- 金额:$ 7.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAccelerationAddressAdoptive Cell TransfersAdoptive TransferAffectAllogenicAntibodiesAutologousCAR T cell therapyCD19 geneCancer PatientCell TherapyCellsCirculationClinicalClinical ResearchComplexDevelopmentDoseEngineeringEvaluationGeneticGoalsHematologic NeoplasmsHematologyImmuneImmune EvasionImmune systemImmunosuppressionImpairmentInflammationKnowledgeLiquid substanceLymphocyteMacrophageMalignant NeoplasmsMediatingMediatorModificationMolecularMyeloid-derived suppressor cellsNatural Killer CellsNeoplasm MetastasisNeuroblastomaOX40PatientsPeptidesPerformancePhasePostdoctoral FellowPre-Clinical ModelPrimary NeoplasmResearchResearch Project GrantsResistanceRestReverse engineeringRiskSiteSolidSolid NeoplasmStudy modelsSurfaceT cell therapyT-LymphocyteTNFSF5 geneTherapeuticTreatment EfficacyTreatment outcomeTumor Promotionarmcancer therapychemokinechimeric antigen receptorchimeric antigen receptor T cellsclinical translationcostcytokineengineered T cellsexhaustimprovedindividual patientinflammatory milieuinhibitormanufacturemouse modelnext generationpost-doctoral trainingpreclinical studypreventreceptorresponsetumortumor growthtumor microenvironmenttumor-immune system interactions
项目摘要
PROJECT SUMMARY
While chimeric antigen receptor (CAR) T-cells can be very effective in advanced hematological malignancies,
autologous products often have variable potency and require complex and expensive manufacturing, limiting
their scalability and accessibility. The long-term goal of this proposal is to develop a well-characterized, ‘off-
the-shelf’ (OTS) therapeutic T-cell platform using banked T-cells pre-manufactured from healthy donors, thus
offering immediate availability and high potency at a reduced cost. One major limitation of this approach is
potential immune rejection of infused OTS T-cells by host T- and NK-cells, which would impair persistence and
clinical benefit of the T-cell therapy. Therefore, my graduate dissertation project (Aim 1) focuses on engineering
OTS therapeutic T-cells to resist host immune rejection. I have developed the ‘first-in-class’ chimeric
alloimmune defense receptor (ADR) which enables allogeneic OTS CAR T-cells to defend themselves by
selectively eliminating activated host alloreactive lymphocytes while sparing other resting non-alloreactive cells.
T-cells co-expressing a 4-1BB-directed ADR and a CAR evade immune rejection and produce long-term anti-
tumor activity in mouse models of OTS CAR T-cell therapy for both liquid and solid tumors. We are now
optimizing the 4-1BB-specific ADR for clinical translation and will initiate a Phase I clinical study in our center. I
am also exploring other potential ADR targets, including OX40 and CD40L, to maximize the anti-rejection activity.
In addition to alloimmune rejection, activity of OTS T-cells in solid tumors can be inhibited by the
immunosuppressive tumor microenvironment (TME). Mounting evidence suggests that the inflammatory milieu
created by therapeutic T-cells may elicit reactive changes both locally (in the TME) and systemically (in
circulation) that further inhibit anti-tumor activity of therapeutic T-cells and possibly promote tumor growth and
metastasis. Examples include a surge of immunosuppressive M2-like macrophages in neuroblastoma patients
receiving GD2 CAR T-cells and poor responses to CD19 CAR T-cell therapy in patients with high circulating
myeloid-derived suppressor cells. In addition, preclinical studies indicate that treatment-induced inflammation
enhances pre-metastatic niche (PMN) formation and increases the risk of metastasis. Therefore, during my post-
doctoral training (Aim 2), I will first elucidate the reactive changes (both in TME and in circulation) caused by
therapeutic T-cells and identify cellular/molecular mediators of enhanced immunosuppression at the primary
tumor site. I will also investigate how T-cell therapies may affect PMN formation in solid tumors. I will then further
modify therapeutic T-cells to counteract these unwanted responses by arming them with secreted factors
(antibodies, peptide inhibitors) to block the responsible cytokines / chemokines, or by enabling them to selectively
eliminate inhibitory cellular subsets in the TME.
Successful completion of both Aims will ultimately improve the efficacy of OTS T-cell therapies of cancer.
项目摘要
虽然嵌合抗原受体(CAR)T细胞在晚期血液系统恶性肿瘤中可能非常有效,但
自动产品通常具有可变的效力,需要复杂且昂贵的制造,限制
它们的可伸缩性和可访问性。该提案的长期目标是开发一个特征良好的,“非”
使用由健康捐助者预先制造的库的T细胞的架子(OTS)治疗T细胞平台,因此
以降低的成本提供即时可用性和高效力。这种方法的一个主要局限性是
宿主T和NK细胞对受感染的OT T细胞的潜在免疫反应,这会损害持久性和
T细胞疗法的临床益处。因此,我的研究生论文项目(AIM 1)专注于工程
OTS治疗T细胞可抵抗宿主免疫排斥。我已经开发了“一流的”嵌合体
同种异体ots t-cells捍卫自己
选择性地消除活化的宿主同种异体淋巴细胞,同时保留其他静止的非异化性细胞。
T细胞共表达4-1BB定向的ADR和汽车逃避免疫注射,并产生长期的抗
液体和实体瘤的OTS CAR T细胞疗法的小鼠模型中的肿瘤活性。我们现在
优化4-1BB特异性ADR进行临床翻译,并将在我们中心进行I期临床研究。我
AM还探索包括OX40和CD40L在内的其他潜在ADR靶标,以最大程度地提高抗排斥活性。
除了同种免疫性排斥反应外,OTS T细胞在实体瘤中的活性可以抑制
免疫抑制肿瘤微环境(TME)。越来越多的证据表明炎症环境
由治疗性T细胞创建的可能会引起本地(在TME)和系统地引起反应性变化(在
循环)进一步抑制热T细胞的抗肿瘤活性,并可能促进肿瘤的生长和
转移。例子包括神经母细胞瘤患者的免疫抑制M2样巨噬细胞的激增
接受高循环的患者的GD2 CAR T细胞和对CD19 CAR T细胞治疗的反应不佳
髓样衍生的抑制细胞。此外,临床前研究表明治疗诱导的注射
增强了替代前生态位(PMN)的形成,并增加了转移的风险。因此,在我的职位中 -
博士培训(AIM 2),我首先阐明由
治疗性T细胞,并鉴定一级免疫抑制的细胞/分子介质
肿瘤部位。我还将研究T细胞疗法如何影响实体瘤的PMN形成。然后我会进一步
修改理论t细胞通过武装分泌因素来抵消这些不必要的反应
(抗体,胡椒抑制剂)阻止负责的细胞因子 /趋化因子或通过有选择性
消除TME中的抑制性细胞子集。
成功完成两个目标将最终提高OTS T细胞疗法的效率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Feiyan Mo其他文献
Feiyan Mo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Feiyan Mo', 18)}}的其他基金
Improving the Efficacy of Allogeneic Cell Therapies of Cancer
提高癌症同种异体细胞疗法的疗效
- 批准号:
10620375 - 财政年份:2022
- 资助金额:
$ 7.78万 - 项目类别:
Improving the Efficacy of Allogeneic Cell Therapies of Cancer
提高癌症同种异体细胞疗法的疗效
- 批准号:
10065285 - 财政年份:2020
- 资助金额:
$ 7.78万 - 项目类别:
Improving the Efficacy of Allogeneic Cell Therapies of Cancer
提高癌症同种异体细胞疗法的疗效
- 批准号:
10226318 - 财政年份:2020
- 资助金额:
$ 7.78万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of Cardiac Injury Resolution by CX3CR1+ Macrophages
CX3CR1巨噬细胞解决心脏损伤的机制
- 批准号:
10719459 - 财政年份:2023
- 资助金额:
$ 7.78万 - 项目类别:
Investigating cerebrovascular dysfunction and cerebral atrophy in severe traumatic brain injury
严重颅脑损伤中脑血管功能障碍和脑萎缩的调查
- 批准号:
10742569 - 财政年份:2023
- 资助金额:
$ 7.78万 - 项目类别:
Development of a new class of BLVRB-targeted redox therapeutics in breast cancer
开发一类新型 BLVRB 靶向乳腺癌氧化还原疗法
- 批准号:
10759653 - 财政年份:2023
- 资助金额:
$ 7.78万 - 项目类别:
Microvascular Neuroimaging in Age-related Alzheimer's Disease and Tauopathies
年龄相关性阿尔茨海默病和 Tau蛋白病的微血管神经影像学
- 批准号:
10738372 - 财政年份:2023
- 资助金额:
$ 7.78万 - 项目类别:
PGRMC Proteins as Markers of Fertility and Overall Health Status
PGRMC 蛋白作为生育力和整体健康状况的标志
- 批准号:
10729068 - 财政年份:2023
- 资助金额:
$ 7.78万 - 项目类别: