Protocadherin 15 as a critical component of the gating spring of human hearing
原钙粘蛋白 15 作为人类听力门控弹簧的重要组成部分
基本信息
- 批准号:10684942
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectAmino AcidsBehaviorBilateral Hearing LossBindingBinding SitesCDH23 geneCadherin DomainComplexDataDependenceDoctor of PhilosophyElasticityElectronsElementsEndolymphEventExhibitsFunctional disorderFutureGeneticGoalsHairHair CellsHearingHumanIndividualInstitutionIon ChannelIonsLaboratoriesLabyrinthLeadLinkMeasurementMechanicsMediatingMediatorMentorshipMolecular ConformationMutationPCDH15 genePathologicPathologyPatientsPhysiciansPhysiologicalPropertyProteinsRampRodRoleScientistSensorySeriesSpeedStereociliumStructureTestingUnited StatesUniversitiesVariantWorkbiophysical propertiescongenital hearing lossdeafnessdimerdisulfide bondexperienceexperimental studyextracellularhearing impairmenthereditary hearing lossin vivoinsightmechanical propertiesmechanotransductionmonomernoveloptic trapoptical trapsphysical propertypreventprogramsresponsesingle moleculesoundstemsupportive environmenttreatment strategy
项目摘要
Project Summary
Hearing loss is the most common sensory pathology in the United States, with one in five adults experiencing
unilateral or bilateral hearing loss. In the inner ear, hearing is mediated at the level of the hair cells: when a
sound deflects the hair bundle, ion channels atop the stereocilia open, allowing for the mechanotransduction of
sound. The identity of the gating spring, the element that controls the opening of these channels, and thus the
precision and sensitivity with which we hear, is unknown. Connecting adjacent stereocilia is the filamentous tip
link complex, which comprises a dimer of protocadherin 15 (PCDH15) and a dimer of cadherin 23. Previous work
in the laboratory showed that the monomer of PCDH15 is softer under physiological forces than predicted based
on its structure alone, suggesting that it has the appropriate properties to serve as a component of the gating
spring of hearing. Using a high-speed optical trap, I have obtained preliminary evidence that the dimer of
PCDH15 is stiffer than the monomer. In Aim 1, I will examine the behavior of the PCDH15 dimer in response
to force at different critical Ca2+ concentrations. I will perform force-ramp experiments on the PCDH15 dimer,
in which force is increased at a constant rate, in order to delineate its response to physiological levels of force.
There are multiple Ca2+ binding sites in the linker regions between extracellular cadherin (EC) domains in
PCDH15, and previous work has shown Ca2+-dependent structural changes in the monomer of PCDH15. I
therefore hypothesize that the dimer will exhibit a similar Ca2+ dependence and will perform experiments at three
Ca2+ levels to probe this. In Aim 2, I will investigate how EC domain unfolding contributes to the overall
response of the PCDH15 monomer to force. Previous work on the monomer of PCDH15 revealed a class of
unfolding events corresponding to the unfolding of an entire EC domain. I therefore hypothesize that EC domain
unfolding is a critical mediator of tip-link tension. I will probe this by performing force-ramp experiments on a
PCDH15 construct in which each EC domain is prevented from unfolding. In Aim 3, I will study how a mutation
that results in non-syndromic deafness affects the mechanics of the PCDH15 monomer. Approximately
50 % of all congenital hearing loss stems from genetic causes. There are many mutations in PCDH15, such as
the V507D mutation in EC5, that result in non-syndromic deafness. In order to study how the mechanics of
PCDH15 are affected in patients with this mutation, I will perform force-ramp experiments on the monomer of
this construct. I hypothesize that PCDH15 V507D will depend critically on Ca2+ concentration and will undergo
more unfolding events than does the wildtype monomer. Taken together, these studies will yield insight into the
role of PCDH15 in normal and aberrant hearing and elucidate its ability to serve as a portion of the gating spring
of hearing. These studies will be carried out with the direct mentorship of Dr. A. J. Hudspeth in the group’s
laboratory at The Rockefeller University, situated within the richly supportive environment of the Tri-Institutional
MD-PhD Program. This proposal will greatly support my goal of becoming a physician-scientist.
项目摘要
听力损失是美国最常见的感官病理学,其中五分之一的成年人经历
单侧或双边听力损失。在内耳中,听力是在毛细胞水平上介导的:
声音示威者的发束,离子通道在立体中开放,允许机械转移
声音。门控弹簧的身份,控制着这些通道的开口的元素,因此
我们听到的精度和敏感性是未知的。连接相邻的立体丝菌是丝状尖端
链接复合物,其中包括协议蛋白15(PCDH15)的二聚体和Cadherin 23的二聚体。先前的工作
在实验室中,PCDH15的月份在物理力下比预测的
仅在其结构上,表明它具有适当的特性,可以作为门控的组成部分
春天的听力。使用高速光学陷阱,我获得了初步证据表明
PCDH15比月份更硬。在AIM 1中,我将检查PCDH15二聚体的行为
在不同的临界Ca2+浓度下强迫。我将在PCDH15二聚体上执行力斜线实验,
其中的力以恒定的速率增加,以描绘出其对物理力水平的反应。
在细胞外钙粘蛋白(EC)域之间的接头区域中有多个CA2+结合位点
PCDH15和以前的工作显示了PCDH15月份CA2+依赖性结构变化。我
因此假设二聚体将存在类似的Ca2+依赖性,并将在三个
Ca2+级别探究此问题。在AIM 2中,我将研究EC领域的发展如何有助于整体
PCDH15个月的响应。 PCDH15月的先前工作显示了一类
展开事件对应于整个EC领域的展开。因此,我假设EC领域
展开是尖端链路张力的关键调解人。我将通过在A上进行力跨实验来探测此问题
PCDH15构造,其中每个EC域都无法展开。在AIM 3中,我将研究突变
这会导致非综合性死亡性影响PCDH15单体的力学。大约
所有先天性听力损失植物中有50%来自遗传原因。 PCDH15中有许多突变,例如
EC5中的V507D突变,导致非综合性死亡。为了研究
PCDH15受到此突变患者的影响,我将在单体上进行力障碍实验
这个结构。我假设PCDH15 V507D将严重取决于Ca2+浓度,并且会经历
与野生型单体相比,展开的事件更多。综上所述,这些研究将洞悉
PCDH15在正常和异常听力中的作用,并阐明其作为门控弹簧的一部分的能力
听力。这些研究将以A. J. Hudspeth博士的直接心态进行
洛克菲勒大学的实验室,位于三机构的富裕环境中
MD-PHD程序。该建议将极大地支持我成为身体科学家的目标。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Camila Marie Villasante其他文献
Camila Marie Villasante的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Camila Marie Villasante', 18)}}的其他基金
Protocadherin 15 as a critical component of the gating spring of human hearing
原钙粘蛋白 15 作为人类听力门控弹簧的重要组成部分
- 批准号:
10388529 - 财政年份:2021
- 资助金额:
$ 5.27万 - 项目类别:
相似国自然基金
低蛋白日粮脂肪和蛋白质互作影响氨基酸消化率的机制
- 批准号:32302793
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
关键非催化氨基酸残基影响新型GH43家族双功能酶底物特异性的机制研究
- 批准号:32301052
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
影响植物磷砷选择性吸收关键氨基酸位点的挖掘及分子机制研究
- 批准号:42307009
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
孕期母体支链氨基酸代谢紊乱和子代支链氨基酸代谢酶基因遗传变异联合作用对儿童神经行为发育影响的队列研究
- 批准号:82373581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RET基因634位点不同氨基酸改变对甲状腺C细胞的影响与机制研究
- 批准号:82370790
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Protein tyrosine phosphatase non-receptor 14 in vascular stability and remodeling
蛋白酪氨酸磷酸酶非受体 14 在血管稳定性和重塑中的作用
- 批准号:
10660507 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Role of Creatine Metabolism in Necrotizing Enterocolitis
肌酸代谢在坏死性小肠结肠炎中的作用
- 批准号:
10724729 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Role of SIK3 in PKA/mTORC1 regulation of adipose browning
SIK3 在 PKA/mTORC1 调节脂肪褐变中的作用
- 批准号:
10736962 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Biomarker of Pancreatic B-cell Loss Predicting Progression to Type 2 Diabetes After Gestational Diabetes
胰腺 B 细胞损失的生物标志物可预测妊娠期糖尿病后进展为 2 型糖尿病
- 批准号:
10583645 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别: