Molecular Mechanisms of Rapamycin's effects on Health and longevity.

雷帕霉素对健康和长寿影响的分子机制。

基本信息

  • 批准号:
    8852520
  • 负责人:
  • 金额:
    $ 40.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-06-01 至 2016-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Rapamycin is the only compound that has been unambiguously shown to extend the maximum lifespan of mice. Unfortunately, side effects including immunosuppression and the elevation of cardiovascular risk factors are likely to limit the utility of the drug in humans. Therefore, there is a great need and opportunity to understand how rapamycin works - both for the development of safe and effective therapeutics, and to gain insight into the basic mechanisms of aging itself. The canonical target of rapamycin is mTORC1, a nutrient sensing kinase whose homolog has been implicated in the extension of lifespan by caloric restriction (CR) in lower organisms. In mice, ablation of the mTORC1 target S6 kinase 1 (S6K1) mimics salient features of CR, including increases in insulin sensitivity, mitochondrial biogenesis, and lifespan. Therefore, it has been postulated that rapamycin mimics CR by inhibiting the mTORC1/S6K1 axis in mammals. In sharp contrast to CR, however, rapamycin actually causes insulin resistance and, at least in cells, inhibits oth the production and activity of mitochondria. These are surprising and potentially very important observations, given that both insulin sensitization and increased mitochondrial biogenesis have been suggested to contribute to CR-induced longevity. We recently showed that rapamycin-induced insulin resistance is the result of inhibiting a second target, mTORC2, and moreover, that specific inhibition of mTORC1 extends lifespan without detrimental effects on insulin signaling. Next, we plan to test whether the inhibition of mitochondrial biogenesi and activity that is observed in cells also occurs in vivo. If so, rapamycin will allow us to proide the first clear demonstration that mitochondrial biogenesis can be uncoupled from longevity. In a second line of experiments, we will treat S6K1 knockout mice with rapamycin to test the hypothesis that S6K1-independent mechanisms contribute to its effects on longevity. There are a number of reasons for believing that this will be the case. S6K1 ablation produces very different changes in physiology and does not extend life in males, whereas rapamycin does. Moreover, the mTORC2 homolog regulates longevity in worms, and our demonstration that rapamycin disrupts mTORC2 in mice therefore provides a candidate mechanism for S6K1-independent effects. Finally, we will explore the tissue-specific consequences of mTORC2 disruption. Loss of mTORC2 in the liver appears to mediate detrimental effects of rapamycin on insulin sensitivity, and ameliorating these effects could lead to complementary approaches to improve the safety and efficacy of the drug. On the other hand, loss of another insulin signaling molecule, IRS2, in the brain has previously been shown to extend life, and loss of neuronal mTORC2 might therefore contribute to the beneficial effect of rapamycin on lifespan. Elucidating the mechanisms by which rapamycin is able to prevent or slow progression of age-related diseases and extend the maximum survival time in mice will offer important insights, and likely new therapeutic targets, in the effort to promote healthy human aging.
描述(由申请人提供):雷帕霉素是唯一已明确显示可延长小鼠最大寿命的化合物。 不幸的是,包括免疫抑制和心血管危险因素升高在内的副作用可能会限制该药物在人类中的应用。 因此,我们非常需要和有机会了解雷帕霉素的作用原理——既可以开发安全有效的治疗方法,也可以深入了解衰老本身的基本机制。雷帕霉素的典型靶标是 mTORC1,这是一种营养感应激酶,其同源物与低等生物体中热量限制 (CR) 延长寿命有关。 在小鼠中,mTORC1 靶标 S6 激酶 1 (S6K1) 的消融模拟了 CR 的显着特征,包括胰岛素敏感性、线粒体生物发生和寿命的增加。 因此,推测雷帕霉素通过抑制哺乳动物的 mTORC1/S6K1 轴来模拟 CR。 然而,与 CR 形成鲜明对比的是,雷帕霉素实际上会导致胰岛素抵抗,并且至少在细胞中抑制线粒体的产生和活性。 鉴于胰岛素敏化和线粒体生物发生的增加都被认为有助于 CR 诱导的长寿,这些观察结果令人惊讶,而且可能非常重要。 我们最近表明,雷帕霉素诱导的胰岛素抵抗是抑制第二个靶点 mTORC2 的结果,此外,mTORC1 的特异性抑制可延长寿命,而不会对胰岛素信号传导产生不利影响。 接下来,我们计划测试细胞中观察到的线粒体生物发生和活性的抑制是否也发生在体内。 如果是这样,雷帕霉素将使我们首次清楚地证明线粒体生物发生可以与长寿脱钩。 在第二个实验中,我们将用雷帕霉素治疗 S6K1 敲除小鼠,以检验 S6K1 独立机制有助于其延长寿命的假设。 有很多理由相信情况会如此。 S6K1 消融会产生截然不同的生理变化,并且不会延长男性的寿命,而雷帕霉素却可以。 此外,mTORC2 同源物调节线虫的寿命,因此我们证明雷帕霉素会破坏小鼠中的 mTORC2,因此为不依赖于 S6K1 的效应提供了候选机制。 最后,我们将探讨 mTORC2 破坏的组织特异性后果。 肝脏中 mTORC2 的缺失似乎会介导雷帕霉素对胰岛素敏感性的不利影响,而改善这些影响可能会导致采取补充方法来提高药物的安全性和有效性。 另一方面,大脑中另一种胰岛素信号分子 IRS2 的缺失此前已被证明可以延长寿命,因此神经元 mTORC2 的缺失可能有助于雷帕霉素对寿命的有益影响。 阐明雷帕霉素能够预防或减缓与年龄相关的疾病的进展并延长小鼠的最大生存时间的机制将为促进人类健康衰老提供重要的见解,并可能提供新的治疗靶点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph A. Baur其他文献

Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance.
槲皮素可增加大脑和肌肉线粒体的生物发生和运动耐量。
Liver Fat – Gone, but Not Forgotten?
肝脏脂肪——消失了,但没有被遗忘?
The role of skeletal muscle Akt in the regulation of muscle mass and glucose homeostasis
骨骼肌 Akt 在肌肉质量和葡萄糖稳态调节中的作用
  • DOI:
    10.1016/j.molmet.2019.08.001
  • 发表时间:
    2019-08-05
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Natasha Jaiswal;M. Gavin;William J. Quinn;Timothy S. Luongo;R. Gelfer;Joseph A. Baur;Paul M. Titchenell
  • 通讯作者:
    Paul M. Titchenell
A subpopulation of lipogenic brown adipocytes drives thermogenic memory
脂肪生成棕色脂肪细胞亚群驱动生热记忆
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    20.8
  • 作者:
    Patrick Lundgren;Prateek V Sharma;Lenka Dohnalová;Kyle Coleman;Giulia T. Uhr;Susanna Kircher;L. Litichevskiy;K. Bahnsen;Hélène C. Descamps;Christina Demetriadou;Jacqueline Chan;K. Chellappa;Timothy O. Cox;Yael Heyman;Sarshan R. Pather;Clarissa Shoffler;Christopher Petucci;Ophir Shalem;Arjun Raj;Joseph A. Baur;Nathaniel W. Snyder;K. Wellen;Maayan Levy;Patrick Seale;Mingyao Li;Cristoph Thaiss
  • 通讯作者:
    Cristoph Thaiss
Use of Optical Redox Imaging to Quantify Alveolar Macrophage Redox State in Infants: Proof of Concept Experiments in a Murine Model and Human Tracheal Aspirates Samples
使用光学氧化还原成像量化婴儿肺泡巨噬细胞氧化还原状态:小鼠模型和人类气管抽吸样本中的概念验证实验
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    7
  • 作者:
    He N. Xu;Diego Gonzalves;Jonathan H. Hoffman;Joseph A. Baur;Lin Z. Li;Erik A. Jensen
  • 通讯作者:
    Erik A. Jensen

Joseph A. Baur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph A. Baur', 18)}}的其他基金

Mechanisms and therapeutic potential of blocking the mitochondrial Mg2+ channel Mrs2 in obesity and NAFLD
阻断线粒体 Mg2 通道 Mrs2 在肥胖和 NAFLD 中的机制和治疗潜力
  • 批准号:
    10679847
  • 财政年份:
    2023
  • 资助金额:
    $ 40.57万
  • 项目类别:
HTS to identify compounds that increase NAD+ levels in neurons and muscle cells
HTS 鉴定可增加神经元和肌肉细胞中 NAD 水平的化合物
  • 批准号:
    10665088
  • 财政年份:
    2022
  • 资助金额:
    $ 40.57万
  • 项目类别:
HTS to identify compounds that increase NAD+ levels in neurons and muscle cells
HTS 鉴定可增加神经元和肌肉细胞中 NAD 水平的化合物
  • 批准号:
    10618481
  • 财政年份:
    2022
  • 资助金额:
    $ 40.57万
  • 项目类别:
Understanding the roles of cardiac NAD pools and therapeutic effects of precursor supplements in heart failure
了解心脏 NAD 池的作用以及前体补充剂对心力衰竭的治疗作用
  • 批准号:
    10539858
  • 财政年份:
    2022
  • 资助金额:
    $ 40.57万
  • 项目类别:
Understanding the roles of cardiac NAD pools and therapeutic effects of precursor supplements in heart failure
了解心脏 NAD 池的作用以及前体补充剂对心力衰竭的治疗作用
  • 批准号:
    10680576
  • 财政年份:
    2022
  • 资助金额:
    $ 40.57万
  • 项目类别:
Understanding the roles of cardiac NAD pools and therapeutic effects of precursor supplements in heart failure
了解心脏 NAD 池的作用以及前体补充剂对心力衰竭的治疗作用
  • 批准号:
    10680576
  • 财政年份:
    2022
  • 资助金额:
    $ 40.57万
  • 项目类别:
Molecular mechanisms underlying the genetic association between PPP1R3B and hepatic steatosis
PPP1R3B与肝脂肪变性遗传关联的分子机制
  • 批准号:
    10224175
  • 财政年份:
    2018
  • 资助金额:
    $ 40.57万
  • 项目类别:
Mechanisms underlying the genetic association between PPP1R3B and Alzheimer's Disease
PPP1R3B 与阿尔茨海默病之间遗传关联的潜在机制
  • 批准号:
    10288770
  • 财政年份:
    2018
  • 资助金额:
    $ 40.57万
  • 项目类别:
Targeting NAD Metabolism to Improve Glucose Homeostasis in Obesity and Aging
靶向 NAD 代谢以改善肥胖和衰老过程中的血糖稳态
  • 批准号:
    9298647
  • 财政年份:
    2013
  • 资助金额:
    $ 40.57万
  • 项目类别:
Targeting NAD Metabolism to Improve Glucose Homeostasis in Obesity and Aging
靶向 NAD 代谢以改善肥胖和衰老过程中的血糖稳态
  • 批准号:
    8596305
  • 财政年份:
    2013
  • 资助金额:
    $ 40.57万
  • 项目类别:

相似国自然基金

基于真实世界医疗大数据的中西药联用严重不良反应监测与评价关键方法研究
  • 批准号:
    82274368
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
OR10G7错义突变激活NLRP3炎症小体致伊马替尼严重皮肤不良反应的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于隐狄利克雷分配模型的心血管系统药物不良反应主动监测研究
  • 批准号:
    82273739
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于真实世界数据的创新药品上市后严重罕见不良反应评价关键方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
D.formicigenerans菌通过调控FoxP3-Treg影响PD-1抑制剂所致免疫相关不良反应的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Evaluation of peripheral nerve stimulation as an alternative to radiofrequency ablation for facet joint pain
周围神经刺激替代射频消融治疗小关节疼痛的评估
  • 批准号:
    10734693
  • 财政年份:
    2023
  • 资助金额:
    $ 40.57万
  • 项目类别:
Perception of Dead Conspecifics modulates neural signaling and lifespan in Caenorhabditis elegans
对死亡同种的感知调节秀丽隐杆线虫的神经信号和寿命
  • 批准号:
    10828478
  • 财政年份:
    2023
  • 资助金额:
    $ 40.57万
  • 项目类别:
FGF21 as a mediator of RPE mitochondrial dysfunction
FGF21 作为 RPE 线粒体功能障碍的介质
  • 批准号:
    10586472
  • 财政年份:
    2023
  • 资助金额:
    $ 40.57万
  • 项目类别:
Development and Preclinical Evaluation of Nanoformulations in Liver Fibrotic Mice
肝纤维化小鼠纳米制剂的开发和临床前评价
  • 批准号:
    10639037
  • 财政年份:
    2023
  • 资助金额:
    $ 40.57万
  • 项目类别:
Sensory Mechanisms of Cadmium-Induced Behavioral Disorders Across Generations
镉引起的几代人行为障碍的感觉机制
  • 批准号:
    10747559
  • 财政年份:
    2023
  • 资助金额:
    $ 40.57万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了