Predicting the Breast Cancer Risk for Women Veterans
预测女性退伍军人患乳腺癌的风险
基本信息
- 批准号:10683053
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptionAffectAfrican AmericanAfrican American populationAgeAllelesBreastBreast Cancer DetectionBreast Cancer Risk FactorBreast Magnetic Resonance ImagingCancer-Predisposing GeneCaucasiansCessation of lifeClinicalClinical DataClinical MarkersComplementDNADataDevelopmentDiseaseEarly DiagnosisEnrollmentEnvironmental ExposureFamilyFrequenciesGene FrequencyGenesGenetic MarkersGerm LinesGoalsHarm ReductionHereditary Nonpolyposis Colorectal NeoplasmsHigh-Risk CancerImageIncidenceIndividualLife StyleMagnetic Resonance ImagingMalignant NeoplasmsMammographyMilitary PersonnelMinority WomenModalityModelingMolecularMonitorMutationParticipantPatientsPenetrancePerformancePilot ProjectsPopulationPopulation ProgramsPredictive Cancer ModelRecommendationRecording of previous eventsResearchResourcesRiskRisk FactorsSNP genotypingSingle Nucleotide PolymorphismSocietiesSyndromeTestingVeteransWomanWorkbrca genebreast densitybreast imagingcancer predispositioncancer riskcohortcombatcost effectivedemographicsethnic diversityexperiencefollow-upgenetic informationgenetic predictorsgenetic profilinghigh riskinstrumentmalignant breast neoplasmmilitary veteranmodel buildingmutantpredictive modelingprogramsprospectiverisk prediction modelscreeningscreening guidelines
项目摘要
Despite years of research, optimal breast cancer screening strategies remain elusive, especially for women
between the age of 40 and 49. Academic societies and agencies differ in their recommendations regarding the
age to begin mammography and the screening intervals. One potential solution is risk-adapted screening,
where decisions around the starting age, stopping age, frequency, and modality of screening are based on
individual risk to maximize the early detection of aggressive cancers and minimize the harms of unnecessary
screening. In addition to demographics, family history, breast density, and other risk factors, single nucleotide
polymorphism (SNP) profiling of germ line DNA has been incorporated into breast cancer prediction models
that can further guide our clinical recommendations for screening. Of relevance to every woman, the ~100 low
penetrant single nucleotide polymorphism (SNP) confers a small risk of breast cancer development but affects
many women due to the high risk allele frequency. High to median penetrant mutations of cancer susceptible
genes, such as BRCA and Lynch syndrome genes, are associated with a higher risk of breast cancer
development but affect only a minority of women who are carriers. Women Veterans in the Million Veteran
Program (MVP) represent a cohort of women for whom comprehensive genetic information and clinical
covariates have been obtained, providing an exceptional opportunity to develop, optimize and/or validate a risk
adapted breast cancer screening strategy. Women predicted to have an elevated risk of developing breast
cancer by prediction models may benefit from screening beginning at a younger age and more frequent breast
imaging including the incorporation of breast MRI. Women predicted to have a low(er) risk for breast cancer
may do well with less intense screening. Because women Veterans in MVP may have unique military and
environmental exposures, it is unknown whether previously developed breast cancer risk prediction models
can be applied to this population. Moreover, since 28% of women Veterans in the current MVP cohort are of
African American descent, while the genetic markers that contribute to the construction of genetic prediction
models are developed from studies involving Caucasians, it is not clear if these instruments can be applied to
women that are of diverse ethnic backgrounds. Our study will determine if breast cancer prediction models built
on currently available SNPs can be validated in women Veterans in the MVP. Moreover, we will determine
whether mutant alleles of cancer susceptibility genes with median to high penetrance will confer the same
(breast) cancer risks as previously established. A higher cancer risk incurred by mutation in these cancer
susceptible genes may make universal testing cost effective, which can further facilitate and motivate the
adoption of genetic profiling to build breast cancer prediction models for every woman. We propose to build
breast cancer risk prediction models in this two-year pilot project with the ultimate goal to apply and validate
these models in the entire MVP population. Our work, focusing on Veteran women, together with and
complemented by a prospective trial that is being launched will greatly enhance our ability to optimize breast
cancer screening in a personalized manner. In sum, we will build a molecularly full characterized women
Veteran cohort in the MVP that we can continue to follow longitudinally. We will focus on building and
validating breast cancer risk prediction models with the potential to extend to other cancer or disease types.
Our work will significantly enhance our abilities for early detection and optimize and individualize breast cancer
screening for all women Veterans and women in general.
尽管进行了多年的研究,但最佳的乳腺癌筛查策略仍然难以捉摸,尤其是对于女性
在40至49岁之间。学术社会和机构在他们关于
开始乳房X线摄影和筛查间隔的年龄。一个潜在的解决方案是适应风险的筛查,
在开始年龄,停止年龄,频率和筛选方式的决定基于
个人风险以最大化侵略性癌症的早期发现并最大程度地减少不必要的危害
筛选。除了人口统计学,家族史,乳房密度和其他危险因素外,单核苷酸
生殖系DNA的多态性(SNP)分析已纳入乳腺癌预测模型
这可以进一步指导我们的临床建议进行筛查。与每个女人的相关性,约100低
渗透剂单核苷酸多态性(SNP)赋予乳腺癌发育风险很小,但影响
许多女性由于高风险等位基因频率。癌症易感的高度至中位渗透突变
基因,例如BRCA和Lynch综合征基因,与乳腺癌的风险更高有关
发展,但只影响少数妇女是载体。百万退伍军人的老兵
计划(MVP)代表了一群妇女,这些妇女为她们全面的遗传信息和临床
已经获得了协变量,为开发,优化和/或验证风险提供了非凡的机会
适应乳腺癌筛查策略。妇女预测患乳房的风险升高
预测模型的癌症可能会受益于从年轻开始的筛查和更频繁的乳房
成像,包括掺入乳房MRI。妇女预测乳腺癌的风险很低
筛查较少的筛查可能会很好。因为MVP的女退伍军人可能有独特的军事力量,并且
环境暴露,尚不清楚先前开发的乳腺癌风险预测模型
可以应用于这个人群。此外,由于当前MVP队列中有28%的女退伍军人是
非裔美国人的血统,而有助于遗传预测的遗传标记
模型是根据涉及高加索人的研究开发的,尚不清楚这些工具是否可以应用于
具有不同种族背景的女性。我们的研究将确定乳腺癌预测模型是否建立
当前可用的SNP可以在MVP中的女退伍军人中得到验证。而且,我们将确定
癌症易感性基因中位数的突变等位基因是否会赋予相同
(乳房)癌症的风险如前所述。这些癌症突变引起的癌症风险更高
易感基因可能使普遍测试成本效益,这可以进一步促进和激励
采用基因分析来为每个女人建立乳腺癌预测模型。我们建议建造
在这个为期两年的试点项目中,乳腺癌风险预测模型的最终目标是申请和验证
这些模型在整个MVP人群中。我们的工作,专注于资深妇女,以及
通过前瞻性试验的补充,正在发起的试验将大大增强我们优化乳房的能力
以个性化的方式进行癌症筛查。总而言之,我们将建立一个分子表征的女性
在MVP中,我们可以继续纵向跟随。我们将专注于建造和
验证乳腺癌风险预测模型,可能会扩展到其他癌症或疾病类型。
我们的工作将大大提高我们的早期检测能力,并优化和个性化乳腺癌
对所有退伍军人和一般妇女进行筛查。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CYNTHIA A. BRANDT其他文献
CYNTHIA A. BRANDT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CYNTHIA A. BRANDT', 18)}}的其他基金
Predicting the Breast Cancer Risk for Women Veterans
预测女性退伍军人患乳腺癌的风险
- 批准号:
10753551 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Predicting the Breast Cancer Risk for Women Veterans
预测女性退伍军人患乳腺癌的风险
- 批准号:
9484619 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Predicting the Breast Cancer Risk for Women Veterans
预测女性退伍军人患乳腺癌的风险
- 批准号:
10884208 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Pain Management Collaboratory Coordinating Center (PMC3)
疼痛管理协作中心 (PMC3)
- 批准号:
10475060 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Pain Management Collaboratory Coordinating Center (PMC3)
疼痛管理协作中心 (PMC3)
- 批准号:
10226899 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Pain Management Collaboratory Coordinating Center (PMC3)
疼痛管理协作中心 (PMC3)
- 批准号:
10669987 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Biomedical Informatics and Data Science Training at Yale
耶鲁大学生物医学信息学和数据科学培训
- 批准号:
9531731 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Pain Management Collaboratory Coordinating Center (PMC3)
疼痛管理协作中心 (PMC3)
- 批准号:
10850236 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Pain Care Quality and Integrated and Complementary Health Approaches
疼痛护理质量以及综合和补充的健康方法
- 批准号:
8757682 - 财政年份:2014
- 资助金额:
-- - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
- 批准号:
10610975 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Improving cross ancestry polygenic prediction of tobacco and alcohol use
改进烟草和酒精使用的跨血统多基因预测
- 批准号:
10739557 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Making Healthy Habits Stick: Extended Contact Interventions to Promote Long Term Physical Activity in African American Cancer Survivors
养成健康习惯:延长接触干预措施以促进非裔美国癌症幸存者的长期身体活动
- 批准号:
10821052 - 财政年份:2023
- 资助金额:
-- - 项目类别:
ARISE (Achieving Routine Intervention and Screening for Emotional health)
ARISE(实现情绪健康的常规干预和筛查)
- 批准号:
10655877 - 财政年份:2023
- 资助金额:
-- - 项目类别: