Biological Analysis Core
生物分析核心
基本信息
- 批准号:10683324
- 负责人:
- 金额:$ 102.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:21 year old3-DimensionalAddressAdultAgeAtlasesBiologicalBiological MarkersBiological ModelsBiologyBloodBrainCellsClinical assessmentsComputing MethodologiesDataData AnalysesElderlyExhibitsExperimental ModelsFreezingGene ExpressionGenetic ModelsGoalsImageIn SituIndirect ImmunofluorescenceIndividualLongevityMapsModalityModelingMolecularMolecular ProfilingMusOrganOrganoidsPhenotypePhysiologicalPopulationPrefrontal CortexProteomeProteomicsResearchResolutionSkinSpinal CordTechnologyTestingTissuesUniversitiesbrain tissuecell typecohortcomputerized toolsdata integrationdesignexperiencegenome-widehuman tissuein vitro Modelin vivoinduced pluripotent stem cellmiddle agemouse modelmulti-scale atlasmultimodalitynovelpharmacologicsenescencesingle nucleus RNA-sequencingspatial integrationtissue mappingtissue preparationtranscriptometranscriptomicsvalidation studiesyoung adult
项目摘要
BIOLOGICAL ANALYSIS CORE (BAC): PROJECT SUMMARY
Thus far, our understanding of the cellular and molecular mechanisms underlying the heterogenous, cell type-
specific phenotypes of senescence, including potentially convergent mechanisms, has been hindered by the
inability to collect in situ ‘omics’ data across the range of scales required, from subcellular to whole organ, in
multiple modalities, and with sufficient depth and throughput to locate the small percentage of cells that would
exhibit a senescence phenotype. To address this unmet need, the Biological Analysis Core (BAC) will generate
and analyze a single-cell level spatial atlas of cell type-specific transcriptome and proteome signatures at a depth
sufficient to permit identification of the rare and heterogeneous senescent cell population. This will be achieved
in intact tissues from healthy individuals ranging in age from 20 – 80 years, which represents a full spectrum of
the human adult lifespan. The ultimate goals of the BAC are to identify and validate a panel of robust senescence
biomarkers for each cell type in our target tissues, and their spatial context, at the single-cell level, and to assess
the cell autonomous and cell non-autonomous effects of senescent cells on the cellular composition and
molecular signatures of the tissue microenvironment. We will take advantage of the advanced technologies,
workflows, and novel computational tools developed and established in the Columbia University Senescence
Tissue Mapping (CUSTMAP) Center and our expertise/experience in generating multimodal omics data at the
single-cell level in three target tissues – brain, spinal cord, and skin. We will achieve our research goals by
employing: 1) the Spatial Transcriptomics (ST) approach pioneered by our team to generate an unbiased,
transcriptome-wide, and cell type-specific map of senescence in the context of intact human tissues, in
conjunction with single-nucleus RNA-seq (snRNA-seq) and novel computational methods developed by the Data
Analysis Core (DAC) to uncover the signatures of heterogeneous senescent cells; and 2) Iterative Indirect
Immunofluorescence Imaging (4i)-based proteomic profiling to enable the interpretation of spatially resolved
gene expression data in the context of cell type-specific senescence-associated changes at the single-cell level.
This combination, allowing for genome-wide molecular and cellular characterization of senescence at single-cell
resolution in space, has not been attempted at this scale and is one of the primary strengths of the CUSTMAP
Center approach. The BAC will achieve its goals in close coordination with the Biospecimen Core (BIO) and the
DAC, using optimized tissue preparation and ST/snRNA-seq/4i parameters. In conjunction with the DAC, the
BAC will integrate these data with analyses of CSF and blood (the biofluids associated with these tissues), to
relate SASP factors with tissue-level signatures. The BAC will also carry out critical validation studies of the
identified tissue- and cell type-specific senescence markers and senescence-associated molecular and cellular
features, using both cutting-edge iPSC-based in vitro models and tissues from mouse models of genetic and
pharmacological senolysis.
生物分析核心(BAC):项目摘要
那遥远的是,我们对异质,细胞类型的基础的细胞和分子机制的理解
特定的感应表型,包括潜在的收敛机制,已受到
无法在所需量表范围内收集原位“ OMICS”数据,从亚细胞到整个器官,
多种方式,并具有足够的深度和吞吐量,以定位少数的细胞
表现出感应表型。为了满足这种未满足的需求,生物分析核心(BAC)将产生
并在深度分析细胞类型特异性转录组和蛋白质组特征的单细胞水平空间图集
足以识别罕见和异质的感觉细胞群体。这将被实现
在健康个体的完整组织中,年龄在20至80岁之间,这代表了一系列
人类的成人寿命。 BAC的最终目标是识别和验证一个健壮的衰老面板
在我们的目标时间和它们的空间环境中,在单细胞水平上的每种单元类型的生物标志物,并评估
感官细胞对细胞组成和
组织微环境的分子特征。我们将利用高级技术,
工作流以及在哥伦比亚大学衰老中开发和建立的新型计算工具
组织映射(Custmap)中心以及我们在生成多模式OMICS数据的专业知识/经验
三个目标时机的单细胞水平 - 大脑,脊髓和皮肤。我们将通过
雇用:1)我们团队开创的空间转录组学(ST)方法,以产生无偏见的,
在完整的人体组织中,整个转录组和细胞类型的感应图,在
与单核RNA-Seq(SNRNA-Seq)和数据开发的新型计算方法的结合
分析核心(DAC)发现异质感觉细胞的特征; 2)迭代间接
免疫荧光成像(基于4i)的蛋白质组学分析以实现空间分辨的解释
基因表达数据在单细胞水平上与细胞类型特异性相关的变化的上下文中。
这种组合允许全基因组分子和细胞在单细胞处的传感表征
在太空中的分辨率尚未按照这种规模尝试,并且是Custmap的主要优势之一
中心方法。 BAC将与Biospecimen Core(BIO)和
DAC,使用优化的组织制备和ST/SNRNA-SEQ/4I参数。与DAC结合
BAC将这些数据与CSF和血液(与这些组织相关的生物流体)的分析相结合
将SASP因子与组织级特征相关联。 BAC还将对
鉴定的组织和细胞类型特异性的感应标记以及与传感相关的分子和细胞
特征,使用基于IPSC的最先进的体外模型和来自遗传和遗传模型的组织
药理学鼻溶解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hemali Phatnani其他文献
Hemali Phatnani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hemali Phatnani', 18)}}的其他基金
Project 1: 3-D Molecular atlas of the aging brain
项目 1:衰老大脑的 3D 分子图谱
- 批准号:
10555897 - 财政年份:2023
- 资助金额:
$ 102.17万 - 项目类别:
相似国自然基金
单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
- 批准号:62374057
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
磁场-电场协同作用下LaAlO3/SrTiO3界面二维电子气的圆偏振光伏效应研究
- 批准号:12304222
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Sirtuin 3维持平滑肌细胞线粒体呼吸功能抑制A型主动脉夹层发病的作用和机制
- 批准号:82300538
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
应变调控二维磁性材料VX3的磁光拉曼研究
- 批准号:12304042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
cohesin与SYCP3协同调控精母细胞减数分裂联会复合体形成过程中染色质三维结构建立的分子机制
- 批准号:32370574
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 102.17万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 102.17万 - 项目类别:
Core D: Integrated Computational Analysis Core
核心D:综合计算分析核心
- 批准号:
10555896 - 财政年份:2023
- 资助金额:
$ 102.17万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 102.17万 - 项目类别: