Molecular genetic mechanisms of spontaneous spinal cord regeneration
脊髓自发再生的分子遗传学机制
基本信息
- 批准号:10681837
- 负责人:
- 金额:$ 47.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-15 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAnimal ModelAnimalsAstrocytesAxonAxotomyCadherinsCellsCentral Nervous SystemComplementDataDevelopmentDystroglycanEGF geneEnvironmentFoundationsFunctional RegenerationGene SilencingGenesGeneticGrowthHourInjuryKnowledgeLasersLeftLengthLibrariesMammalsMasksModelingMolecularMolecular GeneticsMolecular TargetNatural regenerationNerve RegenerationNeurogliaNeuronsOligodendrogliaPathway interactionsPhenotypePlayProcessRecoveryReportingResolutionRoleSiblingsSignal PathwaySignal TransductionSiteSpinal CordSpinal cord injurySynapsesSystemTestingTimeTransgenic OrganismsVertebratesZebrafishaxon regenerationcandidate selectioncell regenerationcell typecentral nervous system injurycompound 30experimental studyin vivoin vivo regenerationlive cell imagingmRNA Expressionmutantneurodevelopmentoptic nerve regenerationperipheral nerve regenerationplanar cell polarityprematurereceptorregenerativeregenerative growthsmall moleculespinal cord regenerationtooltreatment strategy
项目摘要
ABSTRACT
In mammals, spinal cord injury frequently leads to irreversible damage mainly due to the very limited capacity of
injured central nervous system (CNS) axons to reconnect with their preinjury targets. Functional regeneration
requires injured CNS axons to extend over long distances and reconnect with their original synaptic targets,
however even in animal models current treatment strategies produce only modest levels of recovery. Despite
enormous progress over the past decades, our knowledge and understanding of the fundamental molecular
pathways and mechanisms that contribute to the process of spinal cord regeneration has left many fundamental
questions unanswered. For example, are growth rates of regenerating axons uniform, are they preprogramed
and invariable or are they modulated as they extend towards and into the injury site? And if so, what mechanisms
and genes regulate and tune regenerating growth rates? In contrast to mammals, non-mammalian vertebrates
including zebrafish have retained a remarkable capacity for spontaneous CNS regeneration. We have developed
a laser-based axotomy approach to study spinal cord regeneration in larval zebrafish at single axon resolution
in otherwise intact animals. From a candidate screen we identified the Cadherin EGF LAG receptor celsr3 to
play a critical role in CNS regeneration. Our preliminary data reveal that in wild type animals regenerating M-ell
axons switch to 3 fold higher growth rates once they cross the injury site. Celsr3 mutant M-cell axons respond
to injury and grow across the injury site at growth rates indistinguishable from wildtype siblings, but then fail to
increase their growth rates and frequently stall prematurely at about 25% of pre-injury length. Thus, our
preliminary results identified a genetic entry point into the fundamental yet understudied question of whether and
if so through which molecular mechanisms regenerating spinal cord axons regulate their growth rates along their
regenerative path as their environment changes. Finally, we find that Celsr3 is also required for optic nerve
regeneration but is dispensable for peripheral nerve regeneration, strongly suggesting that Celsr3 plays a
selective role in CNS axon regeneration. The experiments in this proposal will (1) determine cellular and
molecular mechanism by which Celsr3 growth rates selectively of regenerating CNS axons; (2) identify the
molecular signaling cascade through which celsr3 promotes regeneration; and (3) Identify additional entry points
into pathways that promote spontaneous spinal cord regeneration. Combined, our results are expected to make
significant contributions to fundamental mechanisms that promote spontaneous spinal cord regeneration in vivo,
and lay the foundation for a comprehensive analysis of spontaneous spinal cord regeneration. Although
spontaneous spinal cord regeneration is largely absent in mammals, mechanisms of spontaneous spinal cord
regeneration might be masked and thus undetectable by the presence and dominance of growth inhibitory
mechanism. Our studies therefore complement studies in mammalian models that focus predominantly on
strategies to overcome growth inhibition.
抽象的
在哺乳动物中,脊髓损伤经常导致不可逆的损伤,这主要是由于脊髓损伤的能力非常有限。
受伤的中枢神经系统(CNS)轴突与受伤前的目标重新连接。功能再生
需要受伤的中枢神经系统轴突长距离延伸并与其原始突触目标重新连接,
然而,即使在动物模型中,目前的治疗策略也只能产生适度的恢复水平。尽管
过去几十年的巨大进步,我们对基本分子的知识和理解
有助于脊髓再生过程的途径和机制留下了许多基本的
未解答的问题。例如,再生轴突的生长速度是否均匀,是否经过预先编程
当它们延伸到受伤部位并进入受伤部位时,它们是不变的还是受到调节?如果是的话,是什么机制
基因调节和调节再生生长速度?与哺乳动物相比,非哺乳动物脊椎动物
包括斑马鱼在内的动物保留了非凡的中枢神经系统自发再生能力。我们开发了
基于激光的轴切术方法以单轴突分辨率研究斑马鱼幼虫的脊髓再生
在其他完好的动物中。从候选筛选中,我们鉴定出钙粘蛋白 EGF LAG 受体 celsr3
在中枢神经系统再生中发挥重要作用。我们的初步数据表明,在野生型动物中再生 M-ell
一旦轴突穿过损伤部位,其生长速度就会提高 3 倍。 Celsr3 突变体 M 细胞轴突做出反应
受伤并在受伤部位以与野生型兄弟姐妹无法区分的生长速度生长,但随后未能
增加其生长速度,并且经常过早地停滞在受伤前长度的 25% 左右。因此,我们的
初步结果确定了一个尚未得到充分研究的基本问题的遗传切入点:是否和
如果是这样的话,再生脊髓轴突通过哪些分子机制调节它们的生长速率
随着环境变化的再生路径。最后,我们发现Celsr3也是视神经所必需的
但对于周围神经再生来说是可有可无的,这强烈表明 Celsr3 发挥着重要作用
CNS 轴突再生中的选择性作用。本提案中的实验将(1)确定细胞和
Celsr3选择性地促进中枢神经系统轴突再生的分子机制; (2) 识别
celsr3 通过分子信号级联促进再生; (3) 确定其他切入点
进入促进脊髓自发再生的途径。综合起来,我们的结果预计将
对促进体内自发脊髓再生的基本机制做出了重大贡献,
为全面分析脊髓自发再生奠定基础。虽然
哺乳动物中基本上不存在自发性脊髓再生,自发性脊髓再生的机制
再生可能被掩盖,因此无法被生长抑制的存在和优势检测到
机制。因此,我们的研究补充了主要关注哺乳动物模型的研究
克服生长抑制的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Granato其他文献
Michael Granato的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Granato', 18)}}的其他基金
Cellular and molecular analysis of startle modulation
惊吓调节的细胞和分子分析
- 批准号:
10553665 - 财政年份:2021
- 资助金额:
$ 47.26万 - 项目类别:
Cellular and molecular analysis of startle modulation
惊吓调节的细胞和分子分析
- 批准号:
10352379 - 财政年份:2021
- 资助金额:
$ 47.26万 - 项目类别:
Cellular and molecular mechanisms of peripheral nerve regeneration
周围神经再生的细胞和分子机制
- 批准号:
9293867 - 财政年份:2016
- 资助金额:
$ 47.26万 - 项目类别:
Cellular and molecular analysis of spontaneous optic nerve regeneration
自发视神经再生的细胞和分子分析
- 批准号:
10450086 - 财政年份:2014
- 资助金额:
$ 47.26万 - 项目类别:
Molecular identification of genes critical for vertebrate startle modulation
对脊椎动物惊吓调节至关重要的基因的分子鉴定
- 批准号:
8678297 - 财政年份:2014
- 资助金额:
$ 47.26万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 47.26万 - 项目类别:
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
- 批准号:
10465010 - 财政年份:2023
- 资助金额:
$ 47.26万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 47.26万 - 项目类别:
In vivo calcium imaging during appetitive learning in HIV Tat transgenic mice exposed to cannabis
暴露于大麻的 HIV Tat 转基因小鼠食欲学习过程中的体内钙成像
- 批准号:
10696442 - 财政年份:2023
- 资助金额:
$ 47.26万 - 项目类别:
Is gestational sleep apnea a previously unrecognized cause of maternal immune activation that predisposes male offspring to disease-relevant neural dysfunction?
妊娠期睡眠呼吸暂停是否是一种以前未被认识到的母体免疫激活的原因,导致男性后代容易出现与疾病相关的神经功能障碍?
- 批准号:
10680972 - 财政年份:2023
- 资助金额:
$ 47.26万 - 项目类别: