Visualizing the divergent conformational dynamics of KCNH channels
可视化 KCNH 通道的不同构象动力学
基本信息
- 批准号:10682486
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-11 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAction PotentialsAcute DiseaseAlanineAmino AcidsArrhythmiaBinding SitesBiophysicsBrainCalciumCalcium ChannelCalmodulinCancer BiologyCardiacCardiac MyocytesCardiac healthCellsCharacteristicsChemosensitizationCryoelectron MicroscopyDNA Sequence AlterationDataDependenceDevelopmentDiseaseElectrodesElectrophysiology (science)EpilepsyEthersExhibitsExposure toFamilyFluorescenceFluorescence Resonance Energy TransferFluorometryFunctional disorderGenesGoalsHealthHeartHumanIndividualInheritedKineticsLeadLigandsLinkMalignant NeoplasmsMeasurableMeasuresMembraneMembrane PotentialsMetal Binding SiteModelingMolecular ConformationMotionMovementMutagenesisMutationNatureNeuronsPhenylalaninePhysiologic pulsePhysiologicalPhysiologyPotassiumPotassium ChannelProteinsRecoveryRegulationReportingResearchResolutionRoleSeizuresSiteStructureSudden DeathSyndromeTestingTissuesTransition ElementsType 2 Long QT syndromeUltraviolet RaysVisualizationVoltage-Gated Potassium Channelcancer typecomparativeexperimental studyextracellulargain of functionheart rhythminsightoverexpressionpatch clampresponsesensorstoichiometrysudden cardiac deaththerapeutic targettherapeutically effectivevoltagevoltage clamp
项目摘要
Project Summary
The KCNH channel family includes both the Human ether á go-go related gene (hERG, KCNH2) potassium
channel that is expressed in the heart and responsible for repolarizing the action potential and, the mammalian
ether á go-go gene (EAG, KCNH1) potassium channel is expressed in neuronal tissue and contributes to
electrical excitability. The role of hERG in cardiac health is well studied and mutations in hERG cause Long QT
type 2 syndrome. Comparatively, the physiological role of EAG is relatively unstudied, yet human EAG is over
expressed in many types of cancer and newly identified genetic mutations are linked to epileptogenic Temple-
Baraitser and Zimmerman-Leband syndromes. Additionally, although EAG is inhibited by calcium sensor
proteins CaM and S100B, the stoichiometry, calcium occupancy and cooperativity remain to be uncovered.
While hERG and EAG channels share high sequence similarity, domain topology, and structural similarity they
have highly divergent gating kinetics and regulation. We hypothesize that each KCNH channel has divergent
and distinct gating dynamics that give rise to unique channel kinetics to tune individual channels for their precise
physiological roles and these dynamics are altered by physiologically relevant effectors. In this proposal we
measure and model the dynamics of the structurally solved KCNH channels hERG and EAG. We use non-
canonical amino acids (ncAA) as small genetically encoded non-perturbing probes to study channel dynamics.
We examine the characteristic slow deactivation of hERG that has been partially attributed to voltage dependent
potentiation (VDP) and manifests as a hyperpolarizing shift in the voltage dependence of deactivation compared
to activation. VDP is reduced in response to lowered extracellular pH which can occur during acute disease
states and accelerates hERG deactivation. We incorporate the fluorescent ncAA 3-[(6-acetyl-2-
naphthalenyl)amino]-L-alanine (L-ANAP) in hERG and use transition metal Förster resonance energy transfer
(tmFRET) to measure dynamic motions at 10-20Å resolution to measure hERG VDP dynamics and examine
how it is altered by pH. We will use distances obtained from tmFRET as constraints to visualize VDP in hERG
with Rosetta modeling. We then examine the role of the highly conserved KCNH intrinsic ligand motif (IL) in
EAG kinetics. In EAG, mutations in the IL alter channel kinetics to slow activation and abolish the Cole-Moore
shift. We incorporate the photo-crosslinkable ncAA 4-benzoyl-L-phenylalanine (BZF) at the IL and use ultraviolet
light to examine the loss of EAG IL dynamics on channel kinetics. Finally, with a traditional FRET approach we
aim to determine the conserved nature of calcium sensor protein regulation of EAG and examine if mutations
linked to TB/ZL syndromes alter EAG calcium regulation as it is unclear if calcium dependent channel inhibition
is lost in disease states. Due to the roles of hERG in cardiac excitability and arrhythmia, and EAG in TB/ZL and
cancer, determining the dynamic gating mechanisms of these channels directly impacts health and disease.
项目摘要
KCNH频道家族包括人类醚ÁGo-Go相关基因(HERG,KCNH2)钾
在心脏中表达的渠道,负责重新振动动作电位,哺乳动物
以太余基因(EAG,KCNH1)钾通道在神经元组织中表达,并有助于
电气令人兴奋。 HERG在心脏健康中的作用很好地研究了,而在HERG中的突变导致QT很长
类型2综合征。相比之下,EAG的身体作用相对未被研究,但人EAG已经结束
在许多类型的癌症和新鉴定的遗传突变中表达与癫痫发生寺庙有关
Baraitser和Zimmerman-Leband综合征。另外,尽管EAG被钙传感器抑制
蛋白质CAM和S100B,化学计量,钙占用率和协调仍有待发现。
HERG和EAG通道具有很高的序列相似性,域拓扑和结构相似性
具有高度不同的门控动力学和调节。我们假设每个KCNH通道都有不同
以及独特的门控动力学,引起独特的频道动力学,以调整单个渠道的精确渠道
生理角色和这些动力学因物理相关的影响而改变。在这个建议中,我们
测量和建模结构解决的KCNH通道的动力学HERG和EAG。我们使用非 -
规范氨基酸(NCAA)作为小遗传编码的非扰动问题,以研究通道动力学。
我们检查了HERG的特征缓慢停用,该远离电压依赖性的部分归因于电压
增强(VDP)并表现为停用电压依赖性的过度变化
激活。 VDP响应于急性疾病期间可能发生的细胞外pH值降低
国家并加速HERG停用。我们结合了荧光NCAA 3 - [(6-乙酰基-2--
HERG中的萘基)氨基] -l-丙氨酸(L-ANAP),并使用过渡金属Förster共振能量转移
(TMFRET)以10-20Å分辨率测量动态运动以测量HERG VDP动力学并检查
如何通过pH改变它。我们将使用从tmfret获得的距离作为约束来可视化herg中的VDP
与Rosetta建模。然后,我们检查高度组成的KCNH固有配体基序(IL)在
EAG动力学。在EAG中,IL中的突变改变了通道动力学以减慢激活和废除Cole-Moore
我们在IL上融合了可互连接的NCAA NCAA 4-苯甲酰l-苯丙氨酸(BZF),并使用紫外线
光以检查通道动力学上EAG IL动力学的损失。最后,采用传统的肉体方法
目的是确定EAG钙传感器蛋白调节的保守性质和检查突变
与TB/ZL综合征有关改变EAG钙调节的链接,因为尚不清楚钙依赖性通道抑制是否存在
在疾病状态下丢失。由于HERG在心脏兴奋性和心律不齐中的作用,以及在TB/ZL中的EAG和EAG
癌症,确定这些通道的动态门控机制直接影响健康和疾病。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Photo-crosslinking hERG channels causes a U.V.-driven, state-dependent disruption of kinetics and voltage dependence of activation.
光交联 hERG 通道会导致紫外线驱动的状态依赖性动力学破坏和电压依赖性激活。
- DOI:10.1101/2024.01.09.574834
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Codding,SaraJ;Trudeau,MatthewC
- 通讯作者:Trudeau,MatthewC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sara J. Codding其他文献
Measuring Intrinsic Ligand Dynamics of hERG Potassium Channels using the Unnatural Amino Acid L-ANAP and TM-FRET
- DOI:
10.1016/j.bpj.2019.11.1523 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Sara J. Codding;Matt C. Trudeau - 通讯作者:
Matt C. Trudeau
Conformational Dynamics of the Intrinsic Ligand in the CNBHD of the Voltage-Gated Potassium Channel hERG
- DOI:
10.1016/j.bpj.2018.11.2901 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Sara J. Codding - 通讯作者:
Sara J. Codding
Reactions of [aryloxy(phenyl)carbene]pentacarbonylchromium(0) complexes with thiolate ions. Decreasing reactivity with increasing basicity of the nucleophile.
[芳氧基(苯基)卡宾]五羰基铬(0)络合物与硫醇盐离子的反应。
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:3.6
- 作者:
C. F. Bernasconi;M. Pérez;Sara J. Codding - 通讯作者:
Sara J. Codding
Using the photo-crosslinkable non-canonical amino acid BZF to capture U.V.-driven, state-dependent disruption of kinetics and voltage dependence of activation in hERG potassium channels
- DOI:
10.1016/j.bpj.2022.11.2128 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Sara J. Codding;Gail A. Robertson;Matt C. Trudeau - 通讯作者:
Matt C. Trudeau
Sara J. Codding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sara J. Codding', 18)}}的其他基金
Visualizing the divergent conformational dynamics of KCNH channels
可视化 KCNH 通道的不同构象动力学
- 批准号:
10525010 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Conformational dynamics of the S4 helix voltage sensor of the potassium channel hERG
钾通道 hERG S4 螺旋电压传感器的构象动力学
- 批准号:
10330951 - 财政年份:2020
- 资助金额:
$ 12.5万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:12202147
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Electrical Mapping Signatures of Adverse Structural and Functional Remodeling in Ventricular Arrhythmia
室性心律失常不良结构和功能重塑的电图特征
- 批准号:
10571137 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Alpha2delta-mediated control of neuronal signaling
Alpha2delta 介导的神经信号传导控制
- 批准号:
10590759 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Exploring the role of ATP1A3 mutations in sudden unexplained death in epilepsy
探索 ATP1A3 突变在癫痫不明原因猝死中的作用
- 批准号:
10688211 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别: