Developmentally Regulated Enhancers and Chromatin Architecture in Human Neurogenesis
人类神经发生中的发育调控增强子和染色质结构
基本信息
- 批准号:10682470
- 负责人:
- 金额:$ 53.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqAffectArchitectureAttenuatedBindingBiologicalBiological AssayCRISPR-mediated transcriptional activationCellsChromatinChromatin LoopClustered Regularly Interspaced Short Palindromic RepeatsComplexDNA BindingDataDevelopmentDiseaseDistalDistantEmbryonic DevelopmentEnhancersEtiologyExcisionGenesGenetic Enhancer ElementGenetic TranscriptionGenomeGenomicsHealthHi-CHumanImpairmentIn VitroMediatingMethylationMicroscopicMolecularNeighborhoodsNervous SystemNeurodevelopmental DisorderNeuroectodermNuclearProcessPropertyProteinsRegenerative MedicineRegulationRepressionResearchSpecific qualifier valueTeratomaTestingTranscriptUntranslated RNAbisulfite sequencingcell fate specificationcell typechromatin immunoprecipitationchromatin modificationchromosome conformation captureembryonic stem cellepigenetic silencinggenomic locushuman embryonic stem cellin vivointerestmultidisciplinarynerve stem cellneuralneurodevelopmentneurogenesisnovelpluripotencyprogenitorprogramspromoterprotein protein interactionself-renewalsingle-cell RNA sequencingspatiotemporalstem cell biologystem cell differentiationtranscription factortranslational potential
项目摘要
PROJECT SUMMARY/ABSTRACT
Mammalian development relies on spatiotemporally orchestrated transcriptional programs that define cell fates.
While the mechanisms that govern such transcriptional states remain unclear, clues are emerging from the study
of enhancers within the non-coding genome and their long-range interactions with gene loci otherwise distant on
a linear scale. Such contacts are facilitated by the three-dimensional (3D) organization of chromatin, a nuclear
property whose dynamic regulation allows for cell fate decisions during embryonic development. SOX2 is a
transcription factor (TF) critical to the self-renewal and pluripotency of embryonic stem cells (ESCs). In early
embryonic development, SOX2 expression persists in neural progenitors, where it is also crucial to their self-
renewal and multipotency, but it is not transcribed in mesendoderm. In human ESCs (hESCs), pluripotency-
associated TFs, such as OCT4, form heteromultimers with SOX2 and are thought to drive SOX2 transcription
by binding the SOX2 promoter. However, the mechanism whereby SOX2 transcription selectively persists in
neuroectoderm in the absence of pluripotency TFs remains unknown. Our group, which is interested in human
neural stem cell (NSC) biology in health and disease, recently discovered that, in human NSCs, transcription of
SOX2 is regulated by a novel enhancer located 600 kb away from the gene locus via 3D chromatin looping.
Importantly, this putative enhancer is repressed in hESCs and mesendodermal progenitors where the contact
between the distal enhancer and promoter is lost. These findings lead us to hypothesize that, during
differentiation of hESCs to early neural precursors, SOX2 transcription becomes de novo dependent on a
developmentally regulated distant enhancer, which exerts its effects on the SOX2 locus via dynamically
configured chromatin looping dependent on the chromatin organizer CTCF. In support of this hypothesis, we
found that CRISPR excision of critical CTCF DNA binding motifs in the SOX2 genomic neighborhood disrupt this
3D chromatin loop to impair neuralization of hESCs and bias hESC differentiation to endodermal fates in
teratoma assays. The proposed research plan will answer the following questions: 1) What are the effects of
experimentally induced enhancer silencing and activation in human neurogenesis? 2) How does perturbation of
the 3D chromatin folding affect neural development and how does it modulate enhancer activity? 3) Does SOX2
act as a conditional initiator of enhancer activation depending on protein-protein interactions with
developmentally regulated TFs? Our studies will shed light on previously unrecognized but critical long-range
interactions between a gene essential to neural development, SOX2, and a distant enhancer, which are mediated
by dynamic reorganization of 3D genome architecture. Elucidating the underlying mechanisms will allow us to
apply these biological concepts toward understanding and treating neurodevelopmental disorders.
项目摘要/摘要
哺乳动物的发展依赖于定义细胞命运的空间序列的转录程序。
虽然控制此类转录状态的机制尚不清楚,但研究的线索仍在研究中
非编码基因组中的增强子及其与基因基因座的长期相互作用,否则
线性尺度。这种接触由核蛋白的三维(3D)组织促进
动态调节的属性允许在胚胎发育过程中做出细胞命运决策。 Sox2是一个
转录因子(TF)对胚胎干细胞的自我更新和多能性至关重要(ESC)。在早期
胚胎发育,Sox2表达持续存在于神经祖细胞中,在这种神经祖细胞中也对他们的自我至关重要
更新和多稳定性,但没有在Mesendoderm中转录。在人类ESC(hESC)中,多能性 -
相关的TF,例如OCT4,与Sox2形成异栽培,被认为可以驱动Sox2转录
通过结合SOX2启动子。但是,Sox2转录选择性持续存在的机制
在没有多能TF的情况下,神经外胚层仍未知。我们的小组,对人类感兴趣
健康和疾病中的神经干细胞(NSC)生物学最近发现,在人类NSC中,
Sox2受3D染色质循环距离基因座600 kb的新型增强剂调节。
重要的是,这种推定的增强剂在接触的hESC和中胚层祖细胞中受到压制
在远端增强子和启动子之间丢失。这些发现使我们假设,在
hESC与早期神经前体的分化,Sox2转录成为从头开始的
受发展调节的远处增强剂,该增强剂通过动态地对Sox2基因座发挥影响
染色质环的配置取决于染色质组织者CTCF。为了支持这一假设,我们
发现SOX2基因组邻域中关键CTCF DNA结合基序的CRISPR切除了这一点
3D染色质循环损害hESC的神经化和偏见hESC分化为内皮层命运的偏差
畸胎瘤分析。拟议的研究计划将回答以下问题:1)
实验诱导的增强子沉默和人类神经发生中的激活? 2)如何扰动
3D染色质折叠会影响神经发育,它如何调节增强剂活性? 3)做sox2
根据蛋白质 - 蛋白质相互作用与
开发监管的TF?我们的研究将阐明以前未被认可但至关重要的远程
对神经发育必不可少的基因,SOX2和远处增强子之间的相互作用,这些基因是介导的
通过3D基因组架构的动态重组。阐明基本机制将使我们能够
将这些生物学概念应用于理解和治疗神经发育障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dimitris G. Placantonakis其他文献
The National Football League and traumatic brain injury: blood-based evaluation at the game
国家橄榄球联盟和创伤性脑损伤:比赛中基于血液的评估
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Rauchman;Dimitris G. Placantonakis;Allison B. Reiss - 通讯作者:
Allison B. Reiss
Dimitris G. Placantonakis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dimitris G. Placantonakis', 18)}}的其他基金
Diverse roles of Notch signaling in glioblastoma
Notch 信号在胶质母细胞瘤中的多种作用
- 批准号:
8686298 - 财政年份:2013
- 资助金额:
$ 53.7万 - 项目类别:
相似国自然基金
面向图神经网络ATAC-seq模体识别的最小间隔单细胞聚类研究
- 批准号:62302218
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:82260745
- 批准年份:2022
- 资助金额:33.00 万元
- 项目类别:地区科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:32100438
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Project 2: Impact of H1/H2 haplotypes on cellular disease-associated phenotypes driven by FTD-causing MAPT mutations
项目 2:H1/H2 单倍型对 FTD 引起的 MAPT 突变驱动的细胞疾病相关表型的影响
- 批准号:
10834336 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
- 批准号:
10564801 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别:
Multi-modal profiling of spatially resolved cell types mediating opioid withdrawal
介导阿片类药物戒断的空间分辨细胞类型的多模式分析
- 批准号:
10787010 - 财政年份:2023
- 资助金额:
$ 53.7万 - 项目类别: