A Web Service for Fragment-based Selectivity Analysis of Drug Leads
基于片段的先导药物选择性分析的 Web 服务
基本信息
- 批准号:10701896
- 负责人:
- 金额:$ 96.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAccelerationAchievementAddressAffinityAlgorithmsBenchmarkingBig DataBindingBinding SitesBiological SciencesBiotechnologyCapitalCase StudyChemicalsChemistryClinical TrialsCloud ComputingCloud ServiceCollectionConiferophytaConsumptionDHFR geneDataData SetDatabasesDoctor of PhilosophyDrug DesignDrug TargetingEvaluationFamilyFamily memberFeedbackFree EnergyFundingGenerationsGeometryGoalsGrantHandHomology ModelingImageIndividualInternetLearningLibrariesMapsMedicineMethodologyModificationMutationPTGS1 genePatientsPatternPeptide HydrolasesPharmaceutical PreparationsPharmacologic SubstancePhasePhosphotransferasesPhylogenetic AnalysisProtein FamilyProtein FragmentProteinsPublicationsPublishingResearch PersonnelResourcesRunningSIRT1 geneSalesSamplingScientistServicesSirtuinsSmall Business Innovation Research GrantStructureTechniquesTechnologyTherapeuticTimeToxic effectTreesUnited States National Institutes of HealthValidationVisualizationWaterWorkcandidate identificationclinical candidatecloud platformcommercializationcomputational chemistrycostdesigndrug discoveryempowermentenzyme pathwayexperienceimprovedinhibitorinnovationinsightopen sourcep38 Mitogen Activated Protein Kinasepre-clinicalpriority pathogenprogramsprotein data bankprotein protein interactionprotein structureprototyperational designrepositoryscale upsimulationsuccesstherapeutic proteintherapeutic targettoolweb appweb interfaceweb services
项目摘要
Significance: The goal of selective drug binding is a fundamental objective in the discovery and optimization
of a compound on a trajectory toward helping patients and becoming an approved medication. To aid in this
goal, our proposal aims to commercialize an innovative tool that addresses target selectivity in a rational de-
sign methodology. The prototype tool leverages our large database of chemical fragment binding maps on
therapeutically relevant proteins. These include over 100,000 maps covering over 600 drug targets including
those on the NIH priority pathogen list, all SARS-CoV-2 structures, and almost 100 structures from the top life
science venture capital firms. Searching spatial and energetic binding patterns of fragments gives valuable in-
sights into designing selective or pan-selectivity in drugs.
Conifer Point’s main product, BMaps, is supported by NIH SBIR grants and will be commercially released in
2022. The product has the largest repository of fragment binding data, affordable/accurate water molecule
maps, and is integrated with other standard chemistry tools. To extract the information from the big data of
fragment maps, a web service—backed by cloud computing—provides the data in a rational drug design appli-
cation. Our prototype selectivity tool, BMaps-select, now allows users to identify candidate compounds by vis-
ualizing how and why compounds interact with multiple target proteins, and by exploring suggested compound
modifications derived from chemical fragment binding maps across multiple target proteins. The result is higher
affinity and more selective compounds that specifically exploit the details of binding sites of a particular protein
or protein family. BMaps and BMaps-select are low-cost, easy-to-learn, and available everywhere via the Web.
Innovation: To date, no tools are available for the rational design of selectivity across 100s of proteins using
fragment maps. Final compound evaluation can be done on individual proteins, but this is time consuming and
inefficient. Our solution, BMaps-select, offers the potential for users to design across 100s of proteins within
seconds and evaluate compounds across the same hundreds of proteins in minutes with easy-to-use tools.
Approach: Our approach follows a similar trajectory to our prior work. First, we will pre-compute a large set of
fragment maps (>1 million maps) for important therapeutic protein families. Build a web interface that can lev-
erage the data and allow for selectivity design across hundreds of proteins. Lastly, we will validate the data and
tools using open source and proprietary datasets, including a unique kinome-wide dataset of >600 inhibitors.
Overall Impact: Drug selectivity is an important and fundamental obstacle in the progression of preclinical
leads. BMaps-select offers the opportunity to be a first-in-class innovation to help accelerate preclinical drug
discovery and to reduce toxicities due to off-target interactions, thus improving success rates of clinical trials.
含义:选择性药物结合的目标是一个基本目标和优化
轨迹上的轨迹,以帮助患者并进行验证。
目标,我们的提议旨在全面商业化的工具网络解决目标的选择性。
符号方法。
在治疗上相关的蛋白质。
NIH优先病原体列表,所有SARS-COV-2结构以及最高寿命的近100个结构
科学风险投资公司。
视力在药物中设计选择性或泛选择性。
Conifer Point的主要产品BMAPS由NIH SBIR赠款支持,并将在商业上发行
2022年。该产品具有最大的碎片结合数据存储库,负担得起/准确的水分子
地图,并与其他标准化学工具集成
片段地图,一种由云计算支持的Web服务 - 在合理设计中提供数据
阳离子。
化合物如何以及为什么与多种tarteins相互作用,并通过探索建议的化合物相互作用
从多个tartein的化学片段结合图中得出的修饰。
亲和力和更多选择性的组合,专门利用特定蛋白质的绑定细节
或蛋白质家族。
创新:迄今
片段图。
FFECT。
秒并使用易于使用的工具在几分钟内评估了数百种蛋白质蛋白质的化合物。
方法:我们的方法遵循与我们先前的工作相似的轨迹。
重要的治疗蛋白家族的片段图(> 100万张图)。
tata,允许数百种蛋白质的选择性设计。
使用开源和专有数据集的工具,包括> 600个抑制剂的独特范围内数据集。
总体影响:毒品选择性是Proclinical进展的重要且根本的障碍
铅。
发现并减少因脱靶相互作用而导致的毒性,从而提高了临床试验的成功率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Laurence Kulp III其他文献
John Laurence Kulp III的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Laurence Kulp III', 18)}}的其他基金
A Web Service for Fragment-based Selectivity Analysis of Drug Leads
基于片段的先导药物选择性分析的 Web 服务
- 批准号:
9906478 - 财政年份:2020
- 资助金额:
$ 96.65万 - 项目类别:
A Web Service for Fragment-based Selectivity Analysis of Drug Leads
用于基于片段的先导药物选择性分析的 Web 服务
- 批准号:
10603646 - 财政年份:2020
- 资助金额:
$ 96.65万 - 项目类别:
PCSK9-LDLR inhibitors from fragment-based design
基于片段设计的 PCSK9-LDLR 抑制剂
- 批准号:
8592507 - 财政年份:2013
- 资助金额:
$ 96.65万 - 项目类别:
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Core A: Administrative, Career Development, and Research Integration Core
核心 A:行政、职业发展和研究整合核心
- 批准号:
10630466 - 财政年份:2023
- 资助金额:
$ 96.65万 - 项目类别:
Assessing Clinical Effectiveness and Implementation of Worksite Sleep Health Coaching in Firefighters
评估消防员工作现场睡眠健康指导的临床效果和实施情况
- 批准号:
10585123 - 财政年份:2023
- 资助金额:
$ 96.65万 - 项目类别:
Identifying barriers to optimizing data sharing and accelerate discovery in Alzheimer’s disease and related dementia research
识别优化数据共享和加速阿尔茨海默病及相关痴呆症研究发现的障碍
- 批准号:
10568214 - 财政年份:2023
- 资助金额:
$ 96.65万 - 项目类别: