Harmonization of breast MRI data
乳腺 MRI 数据的协调
基本信息
- 批准号:10703350
- 负责人:
- 金额:$ 52.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AbdomenAddressAdoptionAlgorithmsAppearanceBrainBreastBreast Magnetic Resonance ImagingCancer DetectionClinicalCollaborationsComputational algorithmDataData SetDiagnosisDiseaseEvaluationGenomicsHeadHip region structureImageInstitutionJournalsMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMammary NeoplasmsManufacturerMethodologyMethodsModelingModernizationModificationNoiseOrganPaperPatient-Focused OutcomesPatientsPublicationsReproducibilityResearchResearch PersonnelScanningScientistSourceStructureTextureThinkingTimeTissuesTrainingTranslationsValidationWorkbreast imagingcancer riskclinical applicationclinical implementationclinical practicecontrast enhancedconvolutional neural networkdeep learningdeep learning algorithmexpectationexperiencegenerative adversarial networkgenomic signaturehigh riskimaging modalityimprovedinnovationlinear transformationnovelnovel strategiespatient prognosispractical applicationpredictive modelingradiologistradiomicsreconstructiontumor
项目摘要
ABSTRACT
Different magnetic resonance imaging (MRI) scanners and different acquisition parameters can produce very
different images for the same patients. This is a significant issue when attempting to use MRIs in a quantitative
manner. Multiple studies have shown promise of quantitative analysis of breast MRIs to diagnose breast
tumors, predict patient outcomes, assess cancer risk, and even identify genomic signatures of cancers.
However, the issue of inhomogeneity of images hampers the progress of the research and clinical
implementation of these findings. In many cases one cannot utilize images from different sources to answer a
research question. Furthermore, predictive models developed at one institution may not generalize to other
institutions. While this is a well-recognized problem, there is currently no solution to it in breast MRI. Some
valid efforts have been undertaken in order to address this issue for other organs, predominantly brain.
However, the problem has not been solved for those organs neither and limited validation of the existing
methods in practical contexts hampers the implementation. Breast is a non-rigid organ with highly variable
composition making the harmonization of breast MRIs particularly challenging and making almost all prior
harmonization methods developed for brain not applicable. Given the urgent need for harmonization in
quantitative research, we propose three harmonization methods that allow for transforming an image acquired
using one scanner setup to assume appearance of another scanner setup. We introduce important technical
innovations to utilize cutting-edge convolutional neural networks for this task. Additionally, we propose a new
approach to the question that has not yet attracted significant systematic consideration: what makes a
harmonization algorithm successful or useful? We do not evaluate pixel-to-pixel match between the
harmonized image and a reference image which is the typical approach. This approach is impractical in breast
imaging since it requires ideally paired images, it does not deal well with expected image noise, and it does not
inform about specific limitations of the evaluated harmonization method. We propose an evaluation framework
that assesses harmonization algorithms in terms of different practical applications including radiomic analysis
and deep learning. The study will be conducted in collaboration between a machine learning scientists (Duke
and Yale), a breast MRI physicist (Cornell), a radiologist whose research focuses on MRI (Duke), and a
biostatistician (Duke). The proposed harmonization and evaluation methods do not require fully paired data
and do not make assumptions about tissue composition. Therefore, they will be applicable across other organs
once implemented with appropriate data for the organ. All harmonization and evaluation algorithms along with
the data will be made publicly available to spearhead further research on this crucial unsolved research topic.
抽象的
不同的磁共振成像(MRI)扫描仪和不同的采集参数可以产生非常非常
同一患者的不同图像。这是尝试在定量中使用MRI时的重要问题
方式。多项研究表明,对乳腺MRI的定量分析有望诊断乳房
肿瘤,预测患者的结局,评估癌症风险,甚至确定癌症的基因组特征。
但是,图像不均匀性的问题阻碍了研究和临床的进步
这些发现的实施。在许多情况下,人们无法利用来自不同来源的图像回答
研究问题。此外,一个机构开发的预测模型可能不会推广到其他机构
机构。尽管这是一个公认的问题,但目前在乳房MRI中尚无解决方案。一些
为了解决其他器官,主要是大脑,已经采取了有效的努力。
但是,对于那些器官尚未解决问题
实际情况下的方法会阻碍实现。乳房是一个非刚性器官,高度可变
构图使乳房MRI的统一特别具有挑战性,并使几乎所有先前
为不适用的大脑开发的协调方法。考虑到迫切需要协调
定量研究,我们提出了三种允许转换获得的图像的协调方法
使用一个扫描仪设置来假设另一个扫描仪设置的外观。我们介绍重要的技术
利用尖端卷积神经网络来完成此任务的创新。此外,我们提出了一个新的
解决尚未引起大量系统考虑的问题的方法:什么使
协调算法成功还是有用?我们不评估像素到像素的匹配
统一图像和参考图像是典型方法。这种方法在乳房中不切实际
成像由于它需要理想的配对图像,因此它不能很好地处理预期图像噪声,并且不会
告知评估协调方法的具体局限性。我们提出了一个评估框架
通过不同的实际应用评估统一算法,包括放射线分析
和深度学习。该研究将通过机器学习科学家(杜克大学)合作进行。
耶鲁大学MRI物理学家(Cornell),一名放射科医生,其研究专注于MRI(DUKE)和A
生物统计学家(公爵)。提出的统一和评估方法不需要完全配对的数据
并且不要对组织组成做出假设。因此,它们将适用于其他器官
一旦实施了适合器官的数据。所有协调和评估算法以及
这些数据将公开使用,以率先对这个至关重要的研究主题进行进一步的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maciej A. Mazurowski其他文献
SegmentAnyBone: A Universal Model that Segments Any Bone at Any Location on MRI
SegmentAnyBone:一种通用模型,可在 MRI 上的任何位置分割任何骨骼
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Han Gu;R. Colglazier;Haoyu Dong;Jikai Zhang;Yaqian Chen;Zafer Yildiz;Yuwen Chen;Lin Li;Jichen Yang;J. Willhite;Alex M. Meyer;Brian Guo;Yashvi Atul Shah;Emily Luo;Shipra Rajput;Sally Kuehn;Clark Bulleit;Kevin A. Wu;Jisoo Lee;Brandon Ramirez;Darui Lu;Jay M. Levin;Maciej A. Mazurowski - 通讯作者:
Maciej A. Mazurowski
Convolutional Neural Networks Rarely Learn Shape for Semantic Segmentation
卷积神经网络很少学习语义分割的形状
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:8
- 作者:
Yixin Zhang;Maciej A. Mazurowski - 通讯作者:
Maciej A. Mazurowski
Lightweight Transformer Backbone for Medical Object Detection
用于医疗物体检测的轻量级变压器主干
- DOI:
10.1007/978-3-031-17979-2_5 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yifan Zhang;Haoyu Dong;N. Konz;Han Gu;Maciej A. Mazurowski - 通讯作者:
Maciej A. Mazurowski
Thyroid Nodules on Ultrasound in Children and Young Adults: Comparison of Diagnostic Performance of Radiologists' Impressions, ACR TI-RADS, and a Deep Learning Algorithm.
儿童和年轻人超声检查甲状腺结节:放射科医生印象、ACR TI-RADS 和深度学习算法的诊断性能比较。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jichen Yang;Laura C. Page;Lars Wagner;B. Wildman;Logan Bisset;D. Frush;Maciej A. Mazurowski - 通讯作者:
Maciej A. Mazurowski
Maciej A. Mazurowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maciej A. Mazurowski', 18)}}的其他基金
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Integration of non-invasive deep tissue microwave thermometry in the VectRx hyperthermia device in a transgenic liver tumor pig model
在转基因肝肿瘤猪模型中将非侵入性深部组织微波测温技术集成到 VectRx 热疗装置中
- 批准号:
10697183 - 财政年份:2023
- 资助金额:
$ 52.4万 - 项目类别:
Liquid biopsy and radiomics for liver cancer surveillance
用于肝癌监测的液体活检和放射组学
- 批准号:
10736720 - 财政年份:2023
- 资助金额:
$ 52.4万 - 项目类别:
Developing microwave epiphysiodesis to correct limb length discrepancies
开发微波骨骺固定术以纠正肢体长度差异
- 批准号:
10804031 - 财政年份:2023
- 资助金额:
$ 52.4万 - 项目类别:
Evaluation of extracellular matrix gel for adhesion prevention and tissue healing intendon surgery
细胞外基质凝胶预防粘连和组织愈合意向手术的评价
- 批准号:
10482261 - 财政年份:2022
- 资助金额:
$ 52.4万 - 项目类别: