Mechanism of Mitochondrial Dysfunction in Mesenchymal Stem Cells During Aging
衰老过程中间充质干细胞线粒体功能障碍的机制
基本信息
- 批准号:8827247
- 负责人:
- 金额:$ 10.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:AgingApoptosisAreaBioenergeticsBiology of AgingBone DiseasesBone RegenerationBone ResorptionBone remodelingCardiovascular systemCell AgingCell SurvivalCell physiologyCellsDataDevelopmentDiabetes MellitusDiseaseEquilibriumEventFailureFemoral FracturesFractureFracture HealingGenetic ModelsGlycolysisGoalsHealthHistologyHumanKnock-outKnockout MiceKnowledgeLeadLinkLiteratureMechanicsMentored Research Scientist Development AwardMesenchymal Stem CellsMetabolismMethodsMissionMitochondriaMolecularMusOsteoblastsOsteoclastsOsteogenesisOsteoporosisOutcome StudyOxidative PhosphorylationOxidative StressPathogenesisPermeabilityPrevention therapyProductionPropertyPublic HealthRecruitment ActivityResearchRoleSiteStem cellsSystemTestingTissuesUndifferentiatedUnited States National Institutes of HealthWild Type Mouseage relatedagedbasebonebone qualitycareercareer developmentcell agecyclophilin Ddesigndisabilityimprovedinhibitor/antagonistinnovationloss of functionmicroCTmitochondrial dysfunctionmouse modelnovelnovel strategiesosteogenicpreventprogramsrepairedsanglifehrin Astem cell biology
项目摘要
DESCRIPTION (provided by applicant): The goal of this K01 Award application is to enhance career development of the Candidate, Dr. Eliseev. Under the guidance of Drs. Regis O'Keefe, Matthew Hilton and Paul Brookes, the Candidate will elucidate the link between bioenergetics and osteogenicity of mesenchymal stem cells (MSC) and aging-related changes in this link. These studies will serve as a vehicle for introducing Dr. Eliseev into research areas that are new to him, such as stem cells, bone remodeling and repair, aging, osteoporosis, and mouse genetic models. MSCs use glycolysis for energy production and switch to mitochondrial oxidative phosphorylation during osteogenic differentiation. This bioenergetic switch is disrupted in aging, diabetes and other disorders leading to decreased MSC osteogenicity and osteoporosis. Our long-term research goal is to understand how cell metabolism determines cell fate and how it can be manipulated for the purposes of prevention and therapies. The objective of this proposal is to determine the mechanism underlying changes in MSC bioenergetics during aging and its effect on MSC osteogenicity and bone quality. Activation of the mitochondrial permeability transition (MPT) is a well documented event in cardiovascular and other systems during aging. The role of the MPT in aged bone has not been elucidated. Based on our data and the literature, our central hypothesis is that bioenergetic failure and decreased viability due to the MPT disrupt osteogenic potential of aged MSCs, leading to osteoporosis and delayed fracture healing that can be reversed by inhibition of the MPT. Our specific aims are: (1) determine the mechanism of mitochondrial dysfunction in aged MSCs and its effect on MSC viability and osteogenicity. We hypothesize that the MPT is such a mechanism; (2) elucidate the effect of inhibition of the MPT on osteoporosis during aging. We hypothesize that this will improve bone quality in aged mice; and (3) determine the effect of inhibition of the MPT on fracture healing in aged mice. We hypothesize that this will accelerate fracture healing. To attain our aims we will use MSC biology methods; mouse genetic models of global or MSC-specific loss-of-function of the MPT; and novel pharmacological inhibitors. Our contribution here is expected to be a detailed understanding of how MSC bioenergetics is disrupted in aging and how it can be improved for the purposes of prevention and therapies. This is very significant because it will lead to new strategies for osteoporosis and fracture repair and provide significant benefits for public health. Our research will also advance the field of bone biology and aging by elucidating yet unknown mechanisms connecting MSC bioenergetics and osteogenicity. Our research is innovative because it departs from the status quo and puts impaired bioenergetics in MSCs in the center of pathogenesis of osteoporosis; and tests a novel approach, MPT inhibition, to treat osteoporosis and delayed fracture healing during aging.
描述(由申请人提供):本次 K01 奖申请的目标是促进候选人 Eliseev 博士的职业发展。在博士的指导下。候选人 Regis O'Keefe、Matthew Hilton 和 Paul Brookes 将阐明间充质干细胞 (MSC) 的生物能学和成骨性之间的联系以及该联系中与衰老相关的变化。这些研究将作为将 Eliseev 博士引入他不熟悉的研究领域的工具,例如干细胞、骨重塑和修复、衰老、骨质疏松症和小鼠遗传模型。 间充质干细胞利用糖酵解来产生能量,并在成骨分化过程中转换为线粒体氧化磷酸化。这种生物能开关在衰老、糖尿病和其他疾病中被破坏,导致 MSC 成骨性降低和骨质疏松症。我们的长期研究目标是了解细胞代谢如何决定细胞命运以及如何操纵它以达到预防和治疗的目的。该提案的目的是确定衰老过程中 MSC 生物能变化的机制及其对 MSC 成骨性和骨质量的影响。线粒体通透性转变(MPT)的激活是衰老过程中心血管和其他系统中一个有据可查的事件。 MPT 在老化骨骼中的作用尚未阐明。根据我们的数据和文献,我们的中心假设是,由于 MPT 导致的生物能衰竭和活力下降破坏了老化 MSC 的成骨潜力,导致骨质疏松和骨折愈合延迟,这些可以通过抑制 MPT 来逆转。我们的具体目标是:(1)确定衰老间充质干细胞线粒体功能障碍的机制及其对间充质干细胞活力和成骨性的影响。我们假设MPT就是这样一种机制; (2)阐明抑制MPT对衰老过程中骨质疏松的影响。我们假设这将改善老年小鼠的骨质量; (3)确定MPT抑制对老年小鼠骨折愈合的影响。我们假设这将加速骨折愈合。为了实现我们的目标,我们将使用 MSC 生物学方法; MPT 整体或 MSC 特异性功能丧失的小鼠遗传模型;和新型药理抑制剂。 我们在这里的贡献预计是详细了解 MSC 生物能量学在衰老过程中如何受到破坏,以及如何改进它以达到预防和治疗的目的。这是非常重要的,因为它将带来骨质疏松症和骨折修复的新策略,并为公众健康带来重大益处。我们的研究还将通过阐明间充质干细胞生物能学和成骨性之间的未知机制,推动骨生物学和衰老领域的发展。我们的研究具有创新性,因为它脱离了现状,将 MSC 中受损的生物能学置于骨质疏松症发病机制的中心;并测试了一种新方法——MPT抑制,以治疗衰老过程中的骨质疏松症和骨折愈合延迟。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roman Eliseev其他文献
Roman Eliseev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roman Eliseev', 18)}}的其他基金
Mitochondrial genetics as a determinant of bone health
线粒体遗传学是骨骼健康的决定因素
- 批准号:
10349639 - 财政年份:2022
- 资助金额:
$ 10.28万 - 项目类别:
Mitochondrial genetics as a determinant of bone health
线粒体遗传学是骨骼健康的决定因素
- 批准号:
10706978 - 财政年份:2022
- 资助金额:
$ 10.28万 - 项目类别:
Mechanism of Mitochondrial Dysfunction in Mesenchymal Stem Cells During Aging
衰老过程中间充质干细胞线粒体功能障碍的机制
- 批准号:
8486853 - 财政年份:2013
- 资助金额:
$ 10.28万 - 项目类别:
Regulation of apoptosis in osteoblasts by Runx2 and NFkB
Runx2 和 NFkB 对成骨细胞凋亡的调节
- 批准号:
8466932 - 财政年份:2011
- 资助金额:
$ 10.28万 - 项目类别:
Regulation of apoptosis in osteoblasts by Runx2 and NFkB
Runx2 和 NFkB 对成骨细胞凋亡的调节
- 批准号:
8299020 - 财政年份:2011
- 资助金额:
$ 10.28万 - 项目类别:
Regulation of apoptosis in osteoblasts by Runx2 and NFkB
Runx2 和 NFkB 对成骨细胞凋亡的调节
- 批准号:
8177970 - 财政年份:2011
- 资助金额:
$ 10.28万 - 项目类别:
相似国自然基金
内质网应激通过m6A甲基化调控牛卵巢颗粒细胞坏死性凋亡机制研究
- 批准号:32372887
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
肿瘤特异性转录本MARCO-TST通过调控AIF核转位抑制细胞凋亡介导HER2阳性乳腺癌治疗耐药的机制研究
- 批准号:82303808
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脑微血管内皮细胞来源外泌体YY1靶向MARK4激活Hippo信号通路促进神经元凋亡导致缺血性脑卒中神经损伤的机制研究
- 批准号:82301496
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PCN/HA光催化促进凋亡成纤维细胞胞葬清除在祛除颌面增生性瘢痕中的作用及机制研究
- 批准号:82301052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负压诱导下自体外周血单核细胞来源的凋亡囊泡对颞下颌关节骨关节炎的临床治疗研究
- 批准号:82370985
- 批准年份:2023
- 资助金额:70 万元
- 项目类别:面上项目
相似海外基金
Investigating the role of CSF production and circulation in aging and Alzheimer's disease
研究脑脊液产生和循环在衰老和阿尔茨海默病中的作用
- 批准号:
10717111 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Aging, PTSD, and the Anterior Cingulate Cortex (ACC)
衰老、创伤后应激障碍 (PTSD) 和前扣带皮层 (ACC)
- 批准号:
10587057 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Systematic and mechanistic assessment of the roles of circRNAs in Alzheimer's Disease
环状RNA在阿尔茨海默病中作用的系统和机制评估
- 批准号:
10666760 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
An Innovative Two-Step Therapeutic Strategy to Maximize the Effect of Stem Cell Therapy for Post-Traumatic Osteoarthritis
创新的两步治疗策略可最大限度地发挥干细胞治疗创伤后骨关节炎的效果
- 批准号:
10643442 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别: