Leveraging a novel health records platform to predict the development of cardiovascular disease following kidney transplantation
利用新型健康记录平台预测肾移植后心血管疾病的发展
基本信息
- 批准号:10679322
- 负责人:
- 金额:$ 5.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingAcuteAddressAllograftingAreaBiological MarkersCalibrationCardiovascular DiseasesCardiovascular ModelsCardiovascular systemCause of DeathCessation of lifeChronicChronic Kidney FailureClinicalComplexComputer softwareConfusionConsensusDataData SetDevelopmentDiscriminationDiseaseDisease OutcomeDisparateElectronic Health RecordEngineeringEquilibriumEvaluationEventExclusionFaceFrequenciesGeneral PopulationGoalsHealthHospitalsHousingImmunosuppressionIncidenceIncomeInflammationInstitutionInterventionInterviewKidney DiseasesKidney TransplantationKnowledgeManualsMentorsMetabolicModelingModificationMorbidity - disease rateMyocardial InfarctionOutcomePathway interactionsPatientsPharmaceutical PreparationsPhysiciansPopulationProviderROC CurveRecording of previous eventsReduce health disparitiesResearchRiskRisk EstimateRisk FactorsRisk ManagementSeveritiesSocioeconomic FactorsStructureSystemTestingTimeTransplant RecipientsTransplantationValidationVisualization softwareWorkburden of illnesscardiovascular disorder riskcardiovascular risk factorclinical biomarkersclinical decision-makingclinical implementationcohortdata visualizationevidence based guidelinesexperiencehazardhealth recordhigh riskimprovedimproved outcomemodel buildingmortalitynovelpatient orientedpatient populationpilot testpredictive modelingpredictive toolspreventprimary endpointrisk predictionrisk prediction modelshared decision makingside effectstandard of caretime usetooltransplant registryusability
项目摘要
PROJECT SUMMARY
Cardiovascular disease (CVD) is the leading cause of death among kidney transplant (KT) recipients with a
functioning allograft. KT patients face a 3- to 5-fold higher risk of CVD morbidity and mortality than the general
population, and within three years of kidney transplantation, 11% of these patients will have had a myocardial
infarction. Evidence suggests that this increased risk is driven by multiple intersecting pathways contributing to
CVD, including the metabolic side-effects of immunosuppression medications, a history of chronic kidney
disease and volume overload, current allograft function, chronic and acute inflammation, and socioeconomic
factors such as housing and income. Despite this, a KT-specific CVD-risk prediction model incorporating known
risk factors has not been developed. Existing datasets lack the ability to capture granular CVD events, fully
characterize contributions of longitudinal biomarkers, or incorporate traditional, transplant-specific, and
socioeconomic factors in their risk estimation. Furthermore, current studies predict disparate composite CVD
outcomes confusing the interpretation of predicted risk and highlighting the lack of a standard CVD outcome to
assess burden in this population. Finally, beyond potential risk miscalculation, existing models remain largely
unused in the clinical setting as they require manual input of data into an online calculator. To address this, we
have leveraged a unique health records platform within our institution to identify a cohort of KT patients and
retrospectively capture their highly granular longitudinal data to assess CVD risk. We have successfully used
this platform to build risk prediction models for two other patient populations and embedded clinical tools into the
health record for use in real time. Thus, my proposed research strategy is to 1) quantify the cumulative incidence
of CVD events in our KT population and define the optimal compositive outcome to assess meaningful risk, 2)
identify and characterize risk factors associated with CVD after KT accounting for time-varying disease states,
longitudinal biomarker trajectories, and socioeconomic factors, and 3) implement and pilot-test an individualized
CVD-risk prediction tool embedded in our health record. The proposed work will generate a comprehensive and
transportable risk-prediction tool specific to the KT population with implications for dissemination across multiple
institutions. Our findings will allow patients and providers to engage in shared decision-making and identify
targets of intervention that will ultimately improve outcomes in this unique population. This work will be
immediately applicable to KT patients burdened with excessive CVD risk and their physicians who must optimize
the balance between maintaining allograft health and minimizing cardiovascular disease.
项目摘要
心血管疾病(CVD)是肾脏移植(KT)接受者的主要原因
功能同种异体移植。 KT患者面临的CVD发病率和死亡率高3至5倍
人口,以及肾脏移植的三年之内,这些患者中有11%患有心肌
梗塞。证据表明,这种增加的风险是由多个相交途径驱动的
CVD,包括免疫抑制药物的代谢副作用,慢性肾脏史
疾病和体积超负荷,当前同种异体功能,慢性和急性炎症以及社会经济
住房和收入等因素。尽管如此,KT特异性的CVD风险预测模型包括已知
尚未开发风险因素。现有数据集缺乏捕获颗粒状CVD事件的能力,完全
表征纵向生物标志物的贡献,或纳入传统,特定于移植的贡献
其风险估计中的社会经济因素。此外,当前的研究预测了不同的复合CVD
结果使人们对预测风险的解释感到困惑,并强调缺乏标准的CVD结果
评估该人群的负担。最后,超出潜在的风险错误估计,现有模型仍然在很大程度上仍然
在临床环境中未使用,因为它们需要将数据输入到在线计算器中。为了解决这个问题,我们
是否利用我们机构内的独特的健康记录平台来确定一群KT患者和
追溯捕获其高度颗粒状的纵向数据以评估CVD风险。我们已经成功使用了
这个平台为其他两个患者人群建立风险预测模型,并嵌入了临床工具
健康记录可实时使用。因此,我提出的研究策略是1)量化累积发生率
我们的KT人群中的CVD事件,并定义了评估有意义风险的最佳组合结果,2)
识别和表征与随时间变化疾病状态的KT后与CVD相关的危险因素,
纵向生物标志物轨迹和社会经济因素,以及3)实施和试点测试个性化
CVD风险预测工具嵌入了我们的健康记录中。拟议的工作将产生全面和
可运输风险预测工具针对KT人群,对跨多个的传播产生了影响
机构。我们的发现将使患者和提供者能够进行共同的决策并确定
干预目标最终将改善这种独特的人群的结果。这项工作将是
立即适用于负担过多CVD风险的KT患者及其必须优化的医生
维持同种异体健康与最小化心血管疾病之间的平衡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary Grace Bowring其他文献
Turn Down for What: Outcomes Associated with Declining an Older Liver Donor
- DOI:
10.1016/j.jamcollsurg.2018.07.524 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:
- 作者:
Christine E. Haugen;Courtenay M. Holscher;Mary Grace Bowring;Andrew M. Cameron;Benjamin Philosophe;Mara McAdams-DeMarco;Dorry L. Segev;Jacqueline M. Garonzik-Wang - 通讯作者:
Jacqueline M. Garonzik-Wang
Mary Grace Bowring的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 5.52万 - 项目类别:
Determining medications associated with drug-induced pancreatic injury through novel pharmacoepidemiology techniques that assess causation
通过评估因果关系的新型药物流行病学技术确定与药物引起的胰腺损伤相关的药物
- 批准号:
10638247 - 财政年份:2023
- 资助金额:
$ 5.52万 - 项目类别:
TIER-PALLIATIVE CARE: A population-based care delivery model to match evolving patient needs and palliative care services for community-based patients with heart failure or cancer
分级姑息治疗:基于人群的护理提供模式,以满足不断变化的患者需求,并为社区心力衰竭或癌症患者提供姑息治疗服务
- 批准号:
10880994 - 财政年份:2023
- 资助金额:
$ 5.52万 - 项目类别:
Identification of gene variants mediating the behavioral and physiological response to THC
鉴定介导 THC 行为和生理反应的基因变异
- 批准号:
10660808 - 财政年份:2023
- 资助金额:
$ 5.52万 - 项目类别: