Using 'Big Data' and Precision Medicine to Assess and Manage Suicide Risk in U.S. Veterans
使用“大数据”和精准医学评估和管理美国退伍军人的自杀风险
基本信息
- 批准号:9842275
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAgeAlgorithmsAreaBig DataBiologicalBiologyCandidate Disease GeneClinicalCodeDataDiagnosticEnrollmentEventFailureFamilyFeeling suicidalGene ExpressionGeneticGenetic MarkersGenetic ResearchGenetic RiskGenetic studyGenotypeGoalsGrief reactionHeritabilityInterventionLeadMental disordersMethylationMilitary PersonnelMissionNot Hispanic or LatinoPainPathway interactionsPhenotypePopulationPrevention approachResearchSample SizeSelf-DirectionSingle Nucleotide PolymorphismSuicideSuicide attemptSuicide preventionTimeTwin StudiesUnited States Department of Veterans AffairsVariantVeteransViolenceWorkactive dutyadministrative databasebasecohorteconomic costgenetic variantgenome wide association studygenome-widehigh riskimprovedinnovationnovelphenotypic dataprecision medicineprogramspsychogeneticsreducing suiciderisk variantscreeningsexstatisticssuicidal behaviorsuicidal morbiditysuicidal risk
项目摘要
Reducing suicide and suicidal behavior (i.e., self-directed violence) is a top priority for the Department of
Veterans Affairs. Recent statistics indicate that, on average, 20 Veterans die by suicide in the U.S. each day.
Family, adoption, and twin studies indicate that genetic factors account for 30-50% of the heritability in suicidal
behavior. Numerous candidate gene and genome wide association studies (GWAS) have been conducted to
identify variants associated with suicidal behavior; however, a major limitation of all prior genetic studies in this
area of research is low statistical power due to small sample sizes and the infrequency with which suicidal
behavior occurs. Another significant limitation concerns the failure of most prior genetic studies of suicidal
behavior to include Veterans, despite the fact that Veterans are at significantly increased risk for suicide and
suicidal behavior.
The proposed research will address these limitations by leveraging the genetic and phenotypic data available
through the Million Veteran Program (MVP) and other key administrative databases to perform the largest and
most well-powered GWAS of suicidal behavior to date. The potential impact of identifying novel genetic
markers that reliably predict suicidal behavior would be enormous. It could fundamentally shift current
understanding of the biology of suicide, lead to new and improved approaches to suicide prevention for
Veterans and civilians alike, and significantly improve VA's ongoing efforts to identify and intervene with high
risk Veterans before they engage in suicidal behavior.
Our long-term goal is to develop effective screening and intervention strategies to reduce the occurrence of
suicide and suicidal behavior. The overall objective of this application is to discover novel genetic variants that
increase Veterans' risk for suicidal behavior. The rationale for the proposed research is that identification of
genetic variants that are reliably associated with suicidal behavior could lead to the discovery of novel,
clinically-meaningful biological pathways that could, in turn, lead to new and improved suicide prevention
approaches for Veterans. We will accomplish our overall objective by pursuing the following specific aims:
In Aim 1, we will refine the phenotypes that we will use to define cases of suicidal behavior within MVP. In Aim
2, we will use GWAS to identify novel genetic variants associated with suicide attempts and suicidal ideation
among Veterans in MVP. In Aim 3, we will replicate significant findings obtained from the MVP cohort in the
Mid-Atlantic MIRECC and Army STARRS Cohorts. In Aim 4, we will explore whether the genetic findings
obtained from MVP can be used to improve VA's ability to identify Veterans at risk for suicidal behavior.
减少自杀和自杀行为(即自我导向的暴力)是卫生部的首要任务
退伍军人事务部。最近的统计数据表明,美国平均每天有 20 名退伍军人自杀身亡。
家庭、收养和双胞胎研究表明,遗传因素占自杀倾向遗传力的 30-50%
行为。已经进行了大量候选基因和全基因组关联研究(GWAS)
识别与自杀行为相关的变异;然而,这方面所有先前遗传学研究的一个主要局限性
由于样本量小且自杀率低,该研究领域的统计功效较低
行为发生。另一个重要的限制是大多数先前自杀基因研究的失败
行为包括退伍军人,尽管事实上退伍军人自杀和自杀的风险显着增加
自杀行为。
拟议的研究将通过利用现有的遗传和表型数据来解决这些局限性
通过百万退伍军人计划(MVP)和其他关键管理数据库来执行最大和
迄今为止最强大的自杀行为 GWAS。识别新基因的潜在影响
可靠地预测自杀行为的标记将是巨大的。它可以从根本上改变当前
了解自杀的生物学,可以为预防自杀带来新的和改进的方法
退伍军人和平民一样,并显着改善退伍军人管理局持续努力识别和干预高风险
在退伍军人进行自杀行为之前,让他们面临风险。
我们的长期目标是制定有效的筛查和干预策略,以减少疾病的发生
自杀和自杀行为。该应用程序的总体目标是发现新的遗传变异
增加退伍军人自杀行为的风险。拟议研究的基本原理是确定
与自杀行为可靠相关的基因变异可能会导致新的、
具有临床意义的生物学途径,反过来可以导致新的和改进的自杀预防
退伍军人的方法。我们将通过追求以下具体目标来实现我们的总体目标:
在目标 1 中,我们将完善表型,用于定义 MVP 中的自杀行为案例。瞄准
2、我们将利用GWAS来识别与自杀企图和自杀意念相关的新基因变异
在 MVP 的退伍军人中。在目标 3 中,我们将复制从 MVP 队列中获得的重要发现
中大西洋 MIRECC 和陆军 STARRS 队列。在目标 4 中,我们将探讨基因发现是否
从 MVP 获得的信息可用于提高 VA 识别有自杀行为风险的退伍军人的能力。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep sequential neural network models improve stratification of suicide attempt risk among US veterans.
深度序列神经网络模型改善了美国退伍军人自杀未遂风险的分层。
- DOI:
- 发表时间:2023-12-22
- 期刊:
- 影响因子:0
- 作者:Martinez, Carianne;Levin, Drew;Jones, Jessica;Finley, Patrick D;McMahon, Benjamin;Dhaubhadel, Sayera;Cohn, Judith;Million Veteran Program;MVP Suicide Exemplar Workgroup;Oslin, David W;Kimbrel, Nathan A;Beckham, Jean C
- 通讯作者:Beckham, Jean C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEAN C. BECKHAM其他文献
JEAN C. BECKHAM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEAN C. BECKHAM', 18)}}的其他基金
A Gene-by-Environment Genome-Wide Interaction Study (GEWIS) of Suicidal Thoughts and Behaviors in Veterans
退伍军人自杀想法和行为的基因与环境全基因组相互作用研究 (GEWIS)
- 批准号:
10487767 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Impact of Reduced Cannabis Use on Functional Outcomes
减少大麻使用对功能结果的影响
- 批准号:
10437223 - 财政年份:2021
- 资助金额:
-- - 项目类别:
An evaluation of insomnia treatment to reduce cardiovascular risk in patients with posttraumatic stress disorder
失眠治疗降低创伤后应激障碍患者心血管风险的评估
- 批准号:
10199022 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Functional Outcomes of Cannabis Use (FOCUS) in Veterans withPosttraumatic Stress Disorder
患有创伤后应激障碍的退伍军人使用大麻(FOCUS)的功能结果
- 批准号:
10756927 - 财政年份:2020
- 资助金额:
-- - 项目类别:
An evaluation of insomnia treatment to reduce cardiovascular risk in patients with posttraumatic stress disorder
失眠治疗降低创伤后应激障碍患者心血管风险的评估
- 批准号:
10647818 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Functional Outcomes of Cannabis Use (FOCUS) in Veterans with Posttraumatic Stress Disorder
患有创伤后应激障碍的退伍军人使用大麻(FOCUS)的功能结果
- 批准号:
10275490 - 财政年份:2020
- 资助金额:
-- - 项目类别:
An evaluation of insomnia treatment to reduce cardiovascular risk in patients with posttraumatic stress disorder
失眠治疗降低创伤后应激障碍患者心血管风险的评估
- 批准号:
10471176 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Functional Outcomes of Cannabis Use (FOCUS) in Veterans withPosttraumatic Stress Disorder
患有创伤后应激障碍的退伍军人使用大麻(FOCUS)的功能结果
- 批准号:
10508499 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Using 'Big Data' and Precision Medicine to Assess and Manage Suicide Risk in U.S. Veterans
使用“大数据”和精准医学评估和管理美国退伍军人的自杀风险
- 批准号:
9483413 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Impact of Reduced Cannabis Use on Functional Outcomes
减少大麻使用对功能结果的影响
- 批准号:
10527328 - 财政年份:2018
- 资助金额:
-- - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
金融科技驱动的供应链库存与融资策略和技术采用合作机制研究
- 批准号:72371117
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:面上项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Enhancing Hypnotic Medication Discontinuation in Primary Care through Supervised Medication Tapering and Digital Cognitive Behavioral Insomnia Therapy
通过监督药物逐渐减量和数字认知行为失眠治疗,加强初级保健中催眠药物的停药
- 批准号:
10736443 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Tailored prostate cancer screening: addressing USPSTF priority research gaps in a racially-diverse study population
量身定制的前列腺癌筛查:解决 USPSTF 在种族多样化研究人群中的优先研究差距
- 批准号:
10735739 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Testing the efficacy of a decision aid and planning tool for family building after cancer
测试癌症后家庭建设决策辅助和规划工具的功效
- 批准号:
10715548 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Feasibility and Usability of a Spanish-Transcreated Pediatric Post-Transplant Adherence App (BMT4me)
西班牙翻译的儿科移植后依从性应用程序 (BMT4me) 的可行性和可用性
- 批准号:
10782256 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Computational Ophthalmology and Biomedical Informatics
计算眼科和生物医学信息学
- 批准号:
10709404 - 财政年份:2023
- 资助金额:
-- - 项目类别: