Deep probabilistic predictive models for stroke and coronary heart disease
中风和冠心病的深度概率预测模型
基本信息
- 批准号:10678650
- 负责人:
- 金额:$ 64.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgeAlgorithmsAreaBrain hemorrhageCardiovascular DiseasesCardiovascular systemCaringCause of DeathCessation of lifeClinicalClinical DataCollectionCoronary heart diseaseDataData SourcesDevelopmentDiagnosticDirect CostsElectronic Health RecordEquityEthnic OriginEventFutureHealthHealthcareHemorrhageHospitalsHumanImageIndividualInequityInterventionKnowledgeLearningMachine LearningManualsMathematicsMeasurementMedicalMedicineMethodsMinority GroupsModelingMorbidity - disease rateNatural Language ProcessingNatureNeurologicPatientsPatternPersonsPhysiciansPopulationPreventionProductivityPublicationsRaceResearchRiskRisk AssessmentRisk EstimateRisk FactorsSeriesSource CodeStatistical ModelsStrokeSurvival AnalysisTechniquesTechnologyTextTimeUncertaintyUnited StatesVisionWorkWritingaggressive therapyburden of illnesscardiovascular risk factorclinical conferenceclinical practiceclinical riskcostdeep learningdeep learning modeldesigndisease prognosisdisorder riskeffectiveness evaluationelectronic health informationethnic biasethnic diversityexperienceflexibilityhealth dataheart disease riskheterogenous datahigh dimensionalityhigh riskimprovedlearning strategyminority communitiesmortalitynatural languagenegative affectneuralneural networknext generationopen sourcepersonalized risk predictionpoint of carepredictive modelingpreventracial biasracial diversityrisk predictionstroke modelstroke riskthromboembolic strokethrombotic
项目摘要
Project Summary
Cardiovascular disease negatively affects millions of people worldwide. Globally, it accounts for approximately
thirty percent of all deaths. Furthermore, a significant fraction of deaths caused by cardiovascular disease occur
in a non-geriatric population; fifteen percent of all worldwide deaths are attributed to cardiovascular disease
for people under the age of seventy. Treatment to prevent cardiovascular events should be based on highly
individualized risk prediction. High risk patients should get more aggressive treatments because the risk of
disease outweighs the burden of treatment, while low risk patients should be managed more conservatively.
For example, anti-thrombotic therapy for coronary heart disease may increase bleeding risk and may not be
appropriate for low-risk patients. Two primary kinds of cardiovascular disease are stroke and coronary heart
disease, and there have been a number of developments in risk scores for both ailments. However, these risk
scores only use a small fraction of the available measurements about a patient and treat risk as a collection of
independent factors rather than considering how their interactions amplify or ameliorate risk. Moreover, a majority
of the popular coronary heart disease and stroke risk scores are designed to be manually computed by a busy
physician at the point of care, which further limits their scope and fidelity. Next generation risk scores for stroke
and cardiovascular disease should take into account all of the available information in the electronic health record
without the constraints of the parametric assumptions of traditional risk modeling. More accurate risk assessment
of coronary heart disease and stroke will lead to better care and reduce the cardiovascular disease burden.
Our vision is to capitalize on large collections of electronic health records along with recent advances in
deep learning to build risk scores that use more available health information while making minimal mathematical
assumptions about the nature of clinical risk. Our proposal propels the field from human computable independent
risks calculations necessitated by previous limitations of technology to calculations that make use of deep learning
to learn highly nonlinear risks and risk factor interactions. We additionally demonstrate how deep learning can be
used to deal with the ever-present issue of missing values in medicine. Our proposal also targets an area under-
explored by previous work on risk scores: fairness. Treatment quality is affected by the quality of risk estimation.
This means populations where estimated risk is less accurate may receive worse care. Risk scores developed
with simple models may only capture risk accurately for the majority population as simple models are not flexible
enough to cover multiple populations. We seek to identify potential risk calculation differences with respect to
race and ethnicity. We will construct and evaluate deep learning methods for coronary heart disease and stroke
risk assessment from electronic health records. We will develop techniques to incorporate clinical text, handle
missing data, and evaluate fairness of deep learning for cardiovascular risk scores. Finally, we will make our work
available as open source code written in deep learning frameworks, at clinical conferences, and publications.
项目概要
心血管疾病对全世界数百万人产生负面影响。在全球范围内,它约占
占所有死亡人数的百分之三十。此外,很大一部分死亡是由心血管疾病引起的
在非老年人群中;全球死亡人数的 15% 归因于心血管疾病
对于七十岁以下的人。预防心血管事件的治疗应基于高度
个性化风险预测。高风险患者应该接受更积极的治疗,因为
疾病超过了治疗负担,而低风险患者应采取更保守的治疗。
例如,冠心病的抗血栓治疗可能会增加出血风险,但可能不会
适合低危患者。两种主要的心血管疾病是中风和冠心病
疾病,并且这两种疾病的风险评分都取得了许多进展。然而,这些风险
评分仅使用有关患者的可用测量值的一小部分,并将风险视为风险的集合
独立因素,而不是考虑它们的相互作用如何放大或减轻风险。此外,大多数
流行的冠心病和中风风险评分被设计为由忙碌的人手动计算
医生在护理点,这进一步限制了他们的范围和保真度。下一代中风风险评分
和心血管疾病应考虑电子健康记录中的所有可用信息
不受传统风险建模参数假设的约束。更准确的风险评估
冠心病和中风的预防将带来更好的护理并减轻心血管疾病的负担。
我们的愿景是利用大量电子健康记录以及最新的进展
深度学习建立风险评分,使用更多可用的健康信息,同时进行最少的数学计算
关于临床风险性质的假设。我们的提案推动了人类可计算独立领域的发展
由于之前的技术限制,利用深度学习的计算需要进行风险计算
学习高度非线性的风险和风险因素的相互作用。我们还展示了深度学习如何
用于解决医学中始终存在的价值缺失问题。我们的建议还针对以下领域:
之前关于风险评分的工作探讨了:公平性。治疗质量受到风险评估质量的影响。
这意味着估计风险不太准确的人群可能会得到更差的护理。制定风险评分
使用简单模型可能只能准确捕捉大多数人群的风险,因为简单模型不灵活
足以覆盖多个人群。我们寻求识别潜在的风险计算差异
种族和民族。我们将构建和评估冠心病和中风的深度学习方法
电子健康记录的风险评估。我们将开发技术来整合临床文本、处理
缺失数据,并评估深度学习对心血管风险评分的公平性。最后,我们将完成我们的工作
以深度学习框架编写的开源代码的形式在临床会议和出版物上提供。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Causal Estimation with Functional Confounders.
具有功能混杂因素的因果估计。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Puli,Aahlad;Perotte,AdlerJ;Ranganath,Rajesh
- 通讯作者:Ranganath,Rajesh
Learning Invariant Representations with Missing Data.
学习缺失数据的不变表示。
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Goldstein,Mark;Puli,Aahlad;Ranganath,Rajesh;Jacobsen,Jörn-Henrik;Chau,Olina;Saporta,Adriel;Miller,AndrewC
- 通讯作者:Miller,AndrewC
Deep learning models for electrocardiograms are susceptible to adversarial attack.
- DOI:10.1038/s41591-020-0791-x
- 发表时间:2020-03
- 期刊:
- 影响因子:82.9
- 作者:Han X;Hu Y;Foschini L;Chinitz L;Jankelson L;Ranganath R
- 通讯作者:Ranganath R
Delay Between Actual Occurrence of Patient Vital Sign and the Nominal Appearance in the Electronic Health Record: Single-Center, Retrospective Study of PICU Data, 2014-2018.
患者生命体征的实际出现与电子健康记录中的标称出现之间的延迟:2014-2018 年 PICU 数据的单中心回顾性研究。
- DOI:10.1097/pcc.0000000000003398
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:SchlosserMetitiri,KatherineR;Perotte,Adler
- 通讯作者:Perotte,Adler
General Control Functions for Causal Effect Estimation from Instrumental Variables.
根据工具变量估计因果效应的一般控制函数。
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Puli,Aahlad;Ranganath,Rajesh
- 通讯作者:Ranganath,Rajesh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajesh Ranganath其他文献
Rajesh Ranganath的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajesh Ranganath', 18)}}的其他基金
Deep probabilistic predictive models for stroke and coronary heart disease
中风和冠心病的深度概率预测模型
- 批准号:
10439509 - 财政年份:2019
- 资助金额:
$ 64.05万 - 项目类别:
Deep probabilistic predictive models for stroke and coronary heart disease
中风和冠心病的深度概率预测模型
- 批准号:
10213130 - 财政年份:2019
- 资助金额:
$ 64.05万 - 项目类别:
相似国自然基金
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
年龄结构和空间分布对艾滋病的影响:建模、分析与控制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机噪声影响下具有年龄结构的布鲁氏菌病动力学行为与最优控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 64.05万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 64.05万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 64.05万 - 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 64.05万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 64.05万 - 项目类别: