Engineering a dynamic three-dimensional in vitro platform for the investigation of human Type 1 Diabetes immunopathogenesis
设计用于研究人类 1 型糖尿病免疫发病机制的动态三维体外平台
基本信息
- 批准号:10677617
- 负责人:
- 金额:$ 4.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdhesionsAffectAnimalsAnoikisAntigensAutoimmune DiseasesBeta CellBindingBiocompatible MaterialsBiologicalBiological AssayBiomimeticsBlood VesselsC-PeptideCD8-Positive T-LymphocytesCRISPR/Cas technologyCXCL10 geneCell CommunicationCell Surface ReceptorsCell modelCell physiologyCell surfaceCellsCellular StructuresClinicalClinical TrialsCoculture TechniquesComplexControlled EnvironmentCytotoxic T-LymphocytesDataDimensionsDiseaseDisease ProgressionDistressEncapsulatedEngineeringEnvironmental Risk FactorExtracellular MatrixFamily suidaeFunctional disorderG6PC2 geneGenesGoalsHemorrhageHomingHumanHydrogelsImageImage AnalysisImmuneIn SituIn VitroInduction of ApoptosisInsulinInsulin-Dependent Diabetes MellitusInterventionInvadedInvestigationIslets of LangerhansKnowledgeMacrophageMediatingMediatorMembraneMicrofluidic MicrochipsMicrofluidicsMusNeuropathyNutrientOrganOvalbuminPancreasPathogenesisPathway interactionsPatternPeripheralPharmaceutical PreparationsPreventionProtocols documentationRiskRoleSignal TransductionSourceStimulusSystemT-Cell ReceptorT-LymphocyteTechnologyTestingTherapeuticTherapeutic InterventionTimeTranslatingWorkblood glucose regulationcell behaviorcell injurycell killingcell motilitycell replacement therapychemokinecomorbidityconfocal imagingcostcytokinecytotoxic CD8 T cellscytotoxicitydiabetes pathogenesisendocrine pancreas developmentexperimental studyhistological specimensimmune activationimmunopathologyimprovedin situ imagingin vitro Modelinnovationinsightisletmicrophysiology systemmigrationmouse modelpreventscreeningspatial integrationtherapy outcometool
项目摘要
PROJECT SUMMARY/ABSTRACT
Type 1 Diabetes (T1D) is an autoimmune disease caused by aberrant T-cell mediated targeted destruction of
insulin-producing beta cells in the pancreas, resulting in loss of blood glucose regulation, with increased long-
term risks of vascular and neuropathic comorbidities. Despite the fact that T1D is one of the most studied organ-
specific autoimmune diseases, the various strategies aimed at intervention, prevention, or reversal of this
disease have failed to succeed due to incomplete knowledge about the precise mechanisms of their action, as
only peripheral assessments of systemic impacts (e.g., circulating cytokine changes, C-peptide levels) are
feasible. This lack of mechanistic understanding of these interventions, as well as substantial time and cost of
clinical trials, is a profound obstacle in improving therapeutic outcomes. To address these significant knowledge
gaps, there is a substantial clinical need to develop human-based ex vivo systems capable of intimately studying
the interplay of islets and immune cells, as well as the contribution of environmental factors on immune cell
activation, homing, and cytotoxicity. The primary hypothesis of this proposal is that the development of an islet-
immune platform has the potential to provide unique insight into T1D, with investigation of activation pathways
and screening of interventional approaches. Thus, the objective of this proposal is to engineer, validate, and
utilize a unique in vitro 3-D platform for the interrogation of human T1D immunopathogenesis by converging
innovative cells with biomaterials, in situ imaging, and microphysiological systems (MPS). Aim 1 will seek to
establish and validate this 3D biomaterial-based co-culture platform. To validate the system, a tiered approach,
building from single antigen murine model cells to human T1D-antigen cells, will be employed. Once validated,
Aim 2 will translate this platform to study human-centric T1D-relevant pathways and interventions. Finally, Aim
3 will seek to integrate spatial and fluidic features by translating the 3D material to an established
microphysiological system (MPS) platform, which will permit the study of T cell migration from a fluidic
microenvironment to the beta cell niche. Results from this proposal should provide a validated and enabling tool
for the study of human T1D-relevant pathophysiology, interventions, and therapeutics. While the proposed field
of application for this platform is T1D, other autoimmune diseases can benefit from this engineered benchtop
platofrm, as they share homologous hallmarks of immune cell dysregulation.
项目概要/摘要
1 型糖尿病 (T1D) 是一种自身免疫性疾病,由异常 T 细胞介导的靶向破坏引起
胰腺中产生胰岛素的β细胞,导致血糖调节丧失,长期胰岛素抵抗增加
血管和神经性合并症的足月风险。尽管 T1D 是研究最多的器官之一
特定的自身免疫性疾病,旨在干预、预防或逆转这种疾病的各种策略
由于对其作用的精确机制了解不完全,疾病未能成功,
仅对系统影响进行外围评估(例如循环细胞因子变化、C 肽水平)
可行的。对这些干预措施缺乏机械性的理解,以及大量的时间和成本
临床试验是改善治疗结果的巨大障碍。为了解决这些重要的知识
差距,临床上迫切需要开发能够深入研究的人体外系统
胰岛和免疫细胞的相互作用,以及环境因素对免疫细胞的影响
激活、归巢和细胞毒性。该提案的主要假设是岛屿的发展-
通过对激活途径的研究,免疫平台有可能为 T1D 提供独特的见解
和筛选介入方法。因此,该提案的目标是设计、验证和
利用独特的体外 3D 平台通过融合来探究人类 T1D 免疫发病机制
具有生物材料、原位成像和微生理系统(MPS)的创新细胞。目标 1 将寻求
建立并验证这个基于 3D 生物材料的共培养平台。为了验证系统,采用分层方法,
将采用从单抗原鼠模型细胞到人类 T1D 抗原细胞的构建。一旦验证通过,
目标 2 将转化该平台来研究以人为中心的 T1D 相关途径和干预措施。最后,瞄准
3 将通过将 3D 材料转换为已建立的模型来寻求整合空间和流体特征
微生理系统 (MPS) 平台,该平台将允许研究 T 细胞从流体迁移
β 细胞生态位的微环境。该提案的结果应提供经过验证的启用工具
用于研究人类 T1D 相关的病理生理学、干预措施和治疗方法。虽然拟议的领域
该平台的主要应用是 T1D,其他自身免疫性疾病也可以从该工程台式设备中受益
平台,因为它们具有免疫细胞失调的同源特征。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Designing biomaterials for the modulation of allogeneic and autoimmune responses to cellular implants in Type 1 Diabetes.
- DOI:10.1016/j.actbio.2021.05.039
- 发表时间:2021-10-01
- 期刊:
- 影响因子:9.7
- 作者:Samojlik, Magdalena M.;Stabler, Cherie L.
- 通讯作者:Stabler, Cherie L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Magdalena M Samojlik其他文献
Magdalena M Samojlik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Magdalena M Samojlik', 18)}}的其他基金
Engineering a dynamic three-dimensional in vitro platform for the investigation of human Type 1 Diabetes immunopathogenesis
设计用于研究人类 1 型糖尿病免疫发病机制的动态三维体外平台
- 批准号:
10460123 - 财政年份:2021
- 资助金额:
$ 4.19万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别:
Reactive aldehydes and alcohol misuse in lung infections
肺部感染中的活性醛和酒精滥用
- 批准号:
10581148 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别:
Endothelial-Leukocyte Adhesion in CAR T Cell Treatment Associated Neurotoxicity
CAR T 细胞治疗相关神经毒性中的内皮-白细胞粘附
- 批准号:
10735681 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别:
Molecular mechanisms of gap junction promotion of lesion formation in Endometriosis
间隙连接促进子宫内膜异位症病变形成的分子机制
- 批准号:
10772708 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别: