DREAMS Translational Core - Methods and Data Integration (MDI)

DREAMS 转化核心 - 方法和数据集成 (MDI)

基本信息

项目摘要

Project Summary/Abstract: Methods and Data Integration (MDI) Core Over the last decade, there have been substantive advances in analytic research methods and the introduction of novel sources and methods of data collection for translational research; these offer tremendous potential for improving the prevention and management of type 2 diabetes. As one of two translational research cores within the Diabetes Research for Equity through Advanced Multilevel Science Center for Diabetes Translational Research (DREAMS-CDTR), the Methods and Data Integration (MDI) Core promote the application of innovative methods and the use of novel data sources that facilitate two overarching priorities of the CDTR: a) design and optimized targeting and tailoring of diabetes-related interventions and public health policy to promote health equity and reduce inequalities, and b) to monitor the impact of innovations in care delivery, public health and social policy on existing health inequalities. Diabetes policy research increasingly relies on methodological expertise in five key areas: (a) natural experiments research; (b) implementation science; (c) health economics including comparative effectiveness and cost-effectiveness analysis; (d) simulation modeling; and (e) machine learning. The MDI core mission is to promote those methods and data to facilitate policy research in diabetes and health equity. The MDI Core will promote technological advances in data and research methods that can be applied to support interventions in the T2-T4 translational research continuum ranging from ‘bench-to-bedside’ research, clinical care and health services research, community-based intervention research, implementation sciences research, comparative effectiveness analysis, all the way to agent-based simulation models that influence policy, systems and environments. We will support a research environment that disseminates new statistical and analytic approaches, such as hierarchical models, causal modeling, machine learning and artificial intelligence techniques, and technological advances in data sources such as lab-based biomarkers, remotely collected health data, and population health data. These goals will be accomplished by 1) Mentoring junior investigators within our DREAMS-CDTR research center, 2.) Providing evidence-based consulting to CDTR, health system, and community partners, and 3.) Disseminating knowledge of novel research methods and data resources facilitating multilevel diabetes translational research and analysis of its impact on equity in diabetes care and prevention to research sites within our CTDR, among all NIDDK-funded CDTRs and the broader research and public health community.
项目摘要/摘要:方法和数据集成 (MDI) 核心 近十年来,分析研究方法和引入方法取得了实质性进展。 转化研究的新数据来源和数据收集方法提供了巨大的潜力; 改善 2 型糖尿病的预防和管理 作为两个转化研究核心之一。 通过高级多层次糖尿病科学中心进行糖尿病公平研究 转化研究 (DREAMS-CDTR)、方法和数据集成 (MDI) 核心促进 应用创新方法和使用新数据源,促进两个首要优先事项 CDTR:a) 设计和优化糖尿病相关干预措施和公共卫生的目标和定制 促进健康公平和减少不平等的政策,b) 监测护理创新的影响 关于现有健康不平等的交付、公共卫生和社会政策。 糖尿病政策研究越来越依赖于五个关键领域的方法学专业知识:(a) 自然 实验研究;(b) 实施科学;(c) 卫生经济学,包括比较有效性 成本效益分析;(d) 仿真建模;以及 (e) 机器学习。 推广这些方法和数据,以促进糖尿病和健康公平方面的政策研究。 MDI核心将促进数据和研究方法的技术进步,这些技术可应用于 支持 T2-T4 转化研究连续体的干预措施,范围从“实验室到临床”研究, 临床护理和健康服务研究、基于社区的干预研究、实施科学 研究、比较有效性分析,一直到基于代理的模拟模型都会影响 我们将支持传播新统计数据的研究环境。 和分析方法,例如层次模型、因果模型、机器学习和人工 情报技术和数据源的技术进步,例如基于实验室的生物标记物,远程 收集的健康数据和人口健康数据将通过以下方式实现:1) 指导青少年。 我们的 DREAMS-CDTR 研究中心的研究人员,2.) 向 CDTR 提供基于证据的咨询, 卫生系统和社区合作伙伴,以及 3.) 传播新颖研究方法和数据的知识 促进多层次糖尿病转化研究及其对糖尿病公平性影响的分析的资源 在我们的 CTDR、所有 NIDDK 资助的 CDTR 和更广泛的范围内对研究地点进行护理和预防 研究和公共卫生界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew John Karter其他文献

Andrew John Karter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew John Karter', 18)}}的其他基金

Relaxed Glycemic Control and the Risk of Infections in Older Adults with Type 2 Diabetes
2 型糖尿病老年人放松血糖控制与感染风险
  • 批准号:
    10686497
  • 财政年份:
    2022
  • 资助金额:
    $ 14.71万
  • 项目类别:
Severe Hypoglycemia: Ascertainment, Surveillance and Pharmacovigilance
严重低血糖:确定、监测和药物警戒
  • 批准号:
    9121555
  • 财政年份:
    2015
  • 资助金额:
    $ 14.71万
  • 项目类别:
Severe Hypoglycemia: Ascertainment, Surveillance and Pharmacovigilance
严重低血糖:确定、监测和药物警戒
  • 批准号:
    8963214
  • 财政年份:
    2015
  • 资助金额:
    $ 14.71万
  • 项目类别:
DREAMS Translational Core - Methods and Data Integration (MDI)
DREAMS 转化核心 - 方法和数据集成 (MDI)
  • 批准号:
    10290748
  • 财政年份:
    2011
  • 资助金额:
    $ 14.71万
  • 项目类别:
HDS CDTR Health Disparities Core
HDS CDTR 健康差异核心
  • 批准号:
    9186356
  • 财政年份:
    2011
  • 资助金额:
    $ 14.71万
  • 项目类别:
HDS CDTR Health Disparities Core
HDS CDTR 健康差异核心
  • 批准号:
    10016264
  • 财政年份:
    2011
  • 资助金额:
    $ 14.71万
  • 项目类别:
Translating Research Into Action for Diabetes (TRIAD) Legacy Study
将糖尿病研究转化为行动 (TRIAD) 遗产研究
  • 批准号:
    8111265
  • 财政年份:
    2010
  • 资助金额:
    $ 14.71万
  • 项目类别:
Translating Research Into Action for Diabetes (TRIAD) Legacy Study
将糖尿病研究转化为行动 (TRIAD) 遗产研究
  • 批准号:
    8298934
  • 财政年份:
    2010
  • 资助金额:
    $ 14.71万
  • 项目类别:
Medication Adherence and Social Disparities in Diabetes
糖尿病的药物依从性和社会差异
  • 批准号:
    7912870
  • 财政年份:
    2009
  • 资助金额:
    $ 14.71万
  • 项目类别:
Failure to Utilize Diabetes Health Services Following a Referral
转诊后未能利用糖尿病健康服务
  • 批准号:
    7935424
  • 财政年份:
    2009
  • 资助金额:
    $ 14.71万
  • 项目类别:

相似国自然基金

基于物理约束人工智能的缺资料流域山洪模拟方法研究
  • 批准号:
    42371086
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于多模态分子影像和人工智能的结直肠癌PD-L1表达演变预测及机制研究
  • 批准号:
    82302185
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人工智能工具对预期与货币政策有效性影响的实验研究
  • 批准号:
    72303050
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于人工智能的微结构光纤研究
  • 批准号:
    62375013
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Planning the VICTORY (VIsual ComplicaTions Of PrematuRitY) Study
规划 VICTORY(早产儿视觉并发症)研究
  • 批准号:
    10645471
  • 财政年份:
    2023
  • 资助金额:
    $ 14.71万
  • 项目类别:
Artificial Intelligence Applied to Video and Speech for Objectively Evaluating Social Interaction and Depression in Mild Cognitive Impairment
人工智能应用于视频和语音,客观评估轻度认知障碍患者的社交互动和抑郁情况
  • 批准号:
    10810965
  • 财政年份:
    2023
  • 资助金额:
    $ 14.71万
  • 项目类别:
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
  • 批准号:
    10648372
  • 财政年份:
    2023
  • 资助金额:
    $ 14.71万
  • 项目类别:
Exploring, Predicting, and Intervening on Long-term Viral suppression Electronically (EPI-LoVE)
电子方式探索、预测和干预长期病毒抑制 (EPI-LoVE)
  • 批准号:
    10676683
  • 财政年份:
    2023
  • 资助金额:
    $ 14.71万
  • 项目类别:
TMJ SYMPHONY Systems-integrated model and mechanisms of patient-centered holistic outcomes and network-supported training and therapy
TMJ SYMPHONY 系统集成模型和以患者为中心的整体结果机制以及网络支持的培训和治疗
  • 批准号:
    10829112
  • 财政年份:
    2023
  • 资助金额:
    $ 14.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了