Deficits of the Early Visual System in Schizophrenia, a Combined Psychophysical, Computational, and Neuroimaging Approach
精神分裂症早期视觉系统的缺陷,综合心理物理学、计算和神经影像学方法
基本信息
- 批准号:10697353
- 负责人:
- 金额:$ 19.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-05 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAreaBehavioralBiological MarkersBiophysicsBrainChronicClinicalClinical ResearchCognitive deficitsCompensationComplexComputer ModelsComputer SimulationCountryDepth PerceptionDetectionDevelopmentDiseaseDisparityEarly DiagnosisFunctional Magnetic Resonance ImagingFunctional disorderHumanImpairmentIndividualLateral Geniculate BodyLinkMeasuresMental disordersMentored Patient-Oriented Research Career Development AwardMentorshipModelingMolecular AbnormalityNatureNeural Network SimulationNeuronal DysfunctionNeurosciencesPatientsPerformancePersonsProcessPsychiatristPsychiatryPsychophysicsQuality of lifeReportingResearchResolutionRetinaSchizophreniaSeriesSignal TransductionStimulusStructureSymptomsSynapsesSystemTechniquesTestingTherapeutic AgentsTherapeutic InterventionTimeTrainingTraining ProgramsVisualVisual CortexVisual PerceptionVisual PsychophysicsVisual SystemVisual impairmentarea striatabehavioral responsebiophysical modelbrain dysfunctioncareercomputational neurosciencecontrast enhanceddeep learningexperimental studyextrastriate visual cortexfunctional MRI scanimprovedinformation processingneuralneural correlateneuroimagingneuromechanismnew therapeutic targetnovel therapeuticsorientation columnsresponseresponse biomarkertreatment responsevisual informationvisual neurosciencevisual processingvisual stimulus
项目摘要
SUMMARY
Schizophrenia is a disabling psychiatric disorder with a chronic course, affecting over three million people in the
country and several tens of millions worldwide. The available treatments for schizophrenia are only modestly
effective in improving the quality of life of these patients, partly due to the unclear neural mechanism of the
disorder. Schizophrenia is associated with deficits in visual perception, in addition to its core clinical symptoms.
The visual system is among the most extensively studied systems in the brain. Therefore, it provides the
opportunity to borrow and combine different techniques from basic neuroscience, to investigate the relationship
between neural dysfunction and the perceptual deficits in schizophrenia, which is the aim of this proposal for a
K23 Mentored Patient-Oriented Research Career Development Award. This proposal details a comprehensive
four-year training program for the applicant, who is a computational neuroscientist and a psychiatrist, to acquire
additional formal training and mentorship in human visual neuroscience and functional neuroimaging. To test his
hypotheses, the applicant will first carry out a series of visual psychophysical studies on schizophrenia patients
and normal control subjects, to track and localize the visual deficits in three consecutive stages of visual
processing in schizophrenia, namely contrast detection, orientation detection, and depth perception. The
hypothesis to be tested is that the deficits are pervasive at all three stages. Second, he will develop computer
simulations of biophysical models for the underlying neural structures of the above visual processing stages,
including the lateral geniculate nucleus (LGN), the primary, and the secondary visual cortices (V1 and V2,
respectively). He will then tune the parameters of the models to replicate the performance of each subject in the
above-mentioned stages, such that a personalized computational model will be developed for each subject.
Subsequently, he will compare the excitatory and inhibitory components of the biophysical models across
schizophrenia and control subjects, to test the hypothesis that a simultaneous reduction in both excitation and
inhibition accounts for the visual deficits in schizophrenia. Third, to further test the hypothesis that the perceptual
deficits are due to the hypoactivity and dysconnectivity within the underlying neural substrates, he will obtain
high resolution (7 Tesla) fMRI scans of LGN, V1, and V2 in schizophrenia and normal control subjects. He will
correlate the perceptual performance of the subjects in the three stages of visual processing with the activity
level and intrinsic functional connectivity of the underlying brain areas. The results of this research will yield a
mechanistic understanding of how dysfunctions at the circuit level can lead to distinct behavioral deficits in
schizophrenia. Such a mechanistic understanding will pave the way for identification of new therapeutic targets
for schizophrenia, and development of novel therapeutic agents. It could also potentially lead to identification of
objective biomarkers to assess response to treatment, and to facilitate early detection of this disease.
概括
精神分裂症是一种慢性病程的致残性精神疾病,影响着超过 300 万人。
国家和全世界数千万。精神分裂症的可用治疗方法很有限
有效改善这些患者的生活质量,部分原因是尚不清楚的神经机制
紊乱。精神分裂症除了其核心临床症状外,还与视觉感知缺陷有关。
视觉系统是大脑中研究最广泛的系统之一。因此,它提供了
有机会借用和结合基础神经科学的不同技术来研究两者之间的关系
精神分裂症的神经功能障碍和知觉缺陷之间的关系,这是本提案的目的
K23 指导的以患者为中心的研究职业发展奖。该提案详细阐述了
为计算神经科学家和精神病学家的申请人提供为期四年的培训计划,以获取
人类视觉神经科学和功能神经影像方面的额外正式培训和指导。来测试他的
假设,申请人将首先对精神分裂症患者进行一系列视觉心理物理学研究
和正常对照受试者,跟踪和定位三个连续视觉阶段的视觉缺陷
精神分裂症中的处理,即对比度检测、方向检测和深度感知。这
要检验的假设是赤字在所有三个阶段都普遍存在。第二,他要开发计算机
对上述视觉处理阶段的底层神经结构的生物物理模型的模拟,
包括外侧膝状核 (LGN)、初级和次级视觉皮层(V1 和 V2、
分别)。然后,他将调整模型的参数,以复制每个受试者在实验中的表现。
上述阶段,以便为每个主题开发个性化的计算模型。
随后,他将比较生物物理模型的兴奋性和抑制性成分
精神分裂症和对照受试者,以检验兴奋和兴奋同时减少的假设
抑制是精神分裂症视觉缺陷的原因。第三,进一步检验感知假设
缺陷是由于潜在神经基质内的活动减退和连接失调造成的,他将获得
精神分裂症和正常对照受试者 LGN、V1 和 V2 的高分辨率(7 特斯拉)fMRI 扫描。他会
将受试者在视觉处理的三个阶段中的感知表现与活动相关联
底层大脑区域的水平和内在功能连接。这项研究的结果将产生
对电路层面的功能障碍如何导致明显的行为缺陷的机制理解
精神分裂症。这种机制的理解将为识别新的治疗靶点铺平道路
用于精神分裂症,并开发新型治疗剂。它还可能导致识别
客观的生物标志物来评估治疗反应,并促进早期发现这种疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baktash Babadi其他文献
Baktash Babadi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baktash Babadi', 18)}}的其他基金
Deficits of the Early Visual System in Schizophrenia, a Combined Psychophysical, Computational, and Neuroimaging Approach
精神分裂症早期视觉系统的缺陷,综合心理物理学、计算和神经影像学方法
- 批准号:
10447941 - 财政年份:2022
- 资助金额:
$ 19.47万 - 项目类别:
相似国自然基金
政府数据开放与资本跨区域流动:影响机理与经济后果
- 批准号:72302091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全球生产网络中领先企业策略合作伙伴区位重构及其对承接地区域发展的影响——战略耦合的视角
- 批准号:42371188
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
双循环下区域低碳创新多重网络的形成机制、影响效应与平衡策略研究
- 批准号:72374090
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
空间多尺度特征与时空相关的台风短临降水区域和强度预报影响研究
- 批准号:42306214
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
太平洋和大西洋年代际海温模态对大湄公河次区域夏季降水变化的协同影响研究
- 批准号:42375050
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 19.47万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 19.47万 - 项目类别:
MAIT cells in lupus skin disease and photosensitivity
MAIT 细胞在狼疮皮肤病和光敏性中的作用
- 批准号:
10556664 - 财政年份:2023
- 资助金额:
$ 19.47万 - 项目类别: