Development of a Novel Engineered Tendon Graft to Assist in Repair of Rotator Cuff Injuries
开发新型工程肌腱移植物以协助修复肩袖损伤
基本信息
- 批准号:10697147
- 负责人:
- 金额:$ 94.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAllogenicAnimalsArthritisBiologicalBiomechanicsCapitalCellsCharacteristicsCicatrixClinicClinicalClinical TrialsCollagenCommunitiesDNADataDevelopmentDevicesEngineeringFailureFibrocartilagesFundingGoalsHistologicHistologyHumanInjuryInvestmentsLaboratoriesLifeMarketingMechanicsMethodologyMethodsMichiganModulusNatural regenerationOperative Surgical ProceduresOrthopedicsOutcomePatient-Focused OutcomesPatientsPhasePhase I Clinical TrialsPhysiologicalProceduresProductionPropertyProtocols documentationQualifyingRecoveryRegenerative MedicineRegenerative capacityResearchResearch PersonnelRiskRotator CuffSheepSiteSmall Business Innovation Research GrantSourceSterilitySurgical suturesSuture TechniquesTechniquesTechnologyTendon InjuriesTendon structureTestingTissue EngineeringTissue GraftsTissuesToxicologyTranslationsUnited StatesVisionWomanWorkaging populationanterior cruciate ligament injurybiological developmentbiomaterial compatibilitybonebone marrow mesenchymal stem cellcell bankcommercializationcostdesignfabricationfirst-in-humanhealinghumerusimprovedin vivoinnovationlaboratory equipmentmanufacturemechanical signalmigrationmineralizationnovelprotein structurerepair strategyrepairedrestorationrotator cuff injuryrotator cuff tearsafety testingscaffoldskeletal tissuesoft tissuestandard of caresuccesssurgery outcometendon grafttissue regeneration
项目摘要
PROJECT SUMMARY/ABSTRACT
Introduction: Skeletal Tissue Engineering Laboratories (STEL) Technologies, LLC is a woman-owned, Michigan-
based regenerative medicine company founded in 2013. STEL’s first product, the CGEMTM graft, is a unique
biological replacement for the anterior cruciate ligament (ACL) injuries. The researchers have since adapted this
graft technology with the goal of treating Rotator Cuff (RC) injuries increasingly prevalent in the aging population.
Significance: RC tears are a major orthopedic challenge in the US with over 460,000 surgeries performed
annually resulting in a market cost of over $523M[1,46]. The failure rate of current RC repair procedures ranges
from 20-95%, with a major contributing factor being the inability to restore native biomechanical properties at the
enthesis, resulting in repairs characterized by a weaker, less organized fibrovascular scar tissue that is prone to
failure[54]. Various tissue-engineering strategies are being developed to improve surgical outcomes and promote
tendon healing, especially at the enthesis. Current approaches focus on the development of biological or
synthetic scaffold devices to reinforce the mechanical strength of the tendon-to-bone connection, but they do not
promote enthesis regeneration. There is significant demand for alternative technologies for RC repair.
Vision for Commercial Product: The ETG-RC is devitalized allogeneic engineered multi-phasic tissue that
regenerates the enthesis and provide an underlayment that allows the migration of endogenous cells, enhancing
the regenerative capacity of the repair site. ETG-RC will lead to enhanced restoration of normal biomechanics
and mobility, resulting in lower cost and decreased risk of re-injury and arthritis. An “off-the-shelf” tissue graft for
RC repair will enhance the standard of care double row suture technique and deliver superior patient outcomes.
Goals of Proposed Research: The goals of this SBIR Project are to establish the feasibility of fabricating a fully
biologic “off-the-shelf” tissue-engineered rotator cuff tendon graft that can restore biomechanical properties of
the tendon-humerus enthesis; and to de-risk the commercial viability of ETG-RC in order to advance the
translatability of this technology for use in human patients.
Specific Aims: The proposed project addresses the several pressing issues that must be resolved prior to
bringing this technology to the FDA for clinical trials: development of a fabrication and decellularization protocol
(Aim 1) and establishment of storage methods to determine shelf life (Aim 2). It then seeks to establish a master
cell bank for fabrication of grafts for the Phase 1-3 clinical trials (Aim 3). CGMP quality ETG-RC grafts fabricated
from the established master cell bank will be tested for safety and efficacy by NAMSA (Aim 4). Positive data
from these studies will support filing of an IND-packet with FDA, enabling a Phase I clinical trial. Success of the
SBIR project will result in the development of an “off-the-shelf” tendon graft ready for first-in-human Phase I
clinical trials. This represents a significant commercialization milestone and a transformative innovation for the
treatment of soft tissue orthopedic injuries.
项目概要/摘要
简介:骨骼组织工程实验室 (STEL) Technologies, LLC 是一家女性所有的密歇根州公司
总部位于再生医学公司,成立于 2013 年。STEL 的第一个产品 CGEMTM 移植物是一种独特的
此后,研究人员对前十字韧带(ACL)损伤进行了生物替代。
移植技术的目标是治疗在老龄化人口中日益普遍的肩袖 (RC) 损伤。
意义:在美国,RC 撕裂是一项重大的骨科挑战,已进行了超过 460,000 例手术
每年导致市场成本超过 5.23 亿美元[1,46] 当前 RC 维修程序的故障率不等。
20-95%,主要影响因素是无法恢复原生生物力学特性
附着点,导致修复的特点是较弱、组织较少的纤维血管疤痕组织,容易发生
正在开发各种组织工程策略来改善手术结果并促进
肌腱愈合,尤其是在附着点处,目前的方法侧重于生物或肌腱的发展。
合成支架装置可以增强肌腱与骨骼连接的机械强度,但它们并不
促进附着点再生对 RC 修复的替代技术有很大的需求。
商业产品愿景:ETG-RC 是充满活力的同种异体工程多相组织,
再生附着点并提供允许内源细胞迁移的底层,增强
ETG-RC 的再生能力将增强正常生物力学的恢复。
和灵活性,从而降低成本并降低再次受伤和关节炎的风险。
RC 修复将提高双排缝合技术的护理标准并提供卓越的患者治疗效果。
拟议研究的目标:该 SBIR 项目的目标是确定制造完全的可行性
生物“现成的”组织工程肩袖肌腱移植物,可以恢复肩袖肌腱的生物力学特性
肌腱-肱骨附着点;并降低 ETG-RC 的商业可行性风险,以推进
该技术在人类患者中使用的可转化性。
具体目标:拟议的项目解决了在实施之前必须解决的几个紧迫问题
将该技术带到 FDA 进行临床试验:开发制造和脱细胞方案
(目标 1)并建立确定保质期的储存方法(目标 2)。
用于为 1-3 期临床试验(目标 3)制造移植物的细胞库。
来自已建立的主细胞库的安全性和有效性将由 NAMSA 进行测试(目标 4)。
这些研究成果将支持向 FDA 提交 IND 数据包,从而使 I 期临床试验取得成功。
SBIR 项目将开发出一种“现成的”肌腱移植物,为首次人体第一阶段做好准备
这代表了一个重要的商业化里程碑和变革性创新。
软组织骨科损伤的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Bollenbach其他文献
Thomas Bollenbach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Bollenbach', 18)}}的其他基金
TR&D-4: Growing Tissue in the Scalable, Modular, Automated, and Closed (SMAC) Foundry
TR
- 批准号:
10554853 - 财政年份:2016
- 资助金额:
$ 94.33万 - 项目类别:
相似国自然基金
抗骨髓瘤的新型同种异体嵌合抗原受体T(CAR T)细胞疗法研发
- 批准号:82270210
- 批准年份:2022
- 资助金额:68 万元
- 项目类别:面上项目
过表达MicroRNA-199a-3p的BMSCs来源的外泌体抑制小鼠DC功能诱导同种异体心脏移植免疫耐受的机制研究
- 批准号:82160081
- 批准年份:2021
- 资助金额:34 万元
- 项目类别:地区科学基金项目
胸腺上皮细胞在小鼠后肢同种异体复合组织移植中的免疫调节作用及相关机制研究
- 批准号:82102354
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有靶向识别和序贯治疗功能的纳米微球对血管化同种异体复合组织移植术后免疫抑制的研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
基于T细胞亚群分化与TLR2/TRAF6信号通路探讨ESAT-6抑制同种异体移植排斥的分子免疫机制
- 批准号:82071800
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Allogeneic BAFF Ligand Based CAR T Cells as a Novel Therapy for B Cell Malignancies
基于同种异体 BAFF 配体的 CAR T 细胞作为 B 细胞恶性肿瘤的新疗法
- 批准号:
10698759 - 财政年份:2023
- 资助金额:
$ 94.33万 - 项目类别:
Strategies to attenuate the indirect alloimmune response in encapsulated pancreatic islet transplantation
减弱封装胰岛移植中间接同种免疫反应的策略
- 批准号:
10678425 - 财政年份:2023
- 资助金额:
$ 94.33万 - 项目类别:
Nanowired human isogenic cardiac organoids to treat acute myocardial ischemia/reperfusion injuries
纳米线人类同基因心脏类器官治疗急性心肌缺血/再灌注损伤
- 批准号:
10721208 - 财政年份:2023
- 资助金额:
$ 94.33万 - 项目类别:
Islet dosing and loading density in injection molded macroencapsulation devices
注塑宏观封装装置中的胰岛剂量和装载密度
- 批准号:
10716174 - 财政年份:2023
- 资助金额:
$ 94.33万 - 项目类别:
Chondrofluid for arthroscopic knee cartilage repair
用于关节镜膝关节软骨修复的软骨液
- 批准号:
10761624 - 财政年份:2023
- 资助金额:
$ 94.33万 - 项目类别: