Molecular and Neural Mechanisms regulating Foraging and Food Intake
调节觅食和食物摄入的分子和神经机制
基本信息
- 批准号:10670270
- 负责人:
- 金额:$ 40.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-07 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AnatomyAnimalsBehaviorBiological AssayBrainCellsChronicComplexDesire for foodDiseaseDissectionDrosophila melanogasterEatingEating BehaviorEating DisordersEnergy IntakeEnergy MetabolismEsthesiaFailureFoodFood deprivation (experimental)GenesGeneticGenetic ModelsGenetic ScreeningHourHumanHungerIndividualIngestionInterneuronsKnowledgeLifeMetabolic syndromeModelingModificationMolecularMonitorMusNervous SystemNeuronsNutrientObesityOrganismPathogenesisPatientsPerceptionPhotonsPopulationProcessResearchRodent ModelRoleSensoryTaste PerceptionTechnologyTestingTherapeuticVertebratesenergy balancefeedingflygene conservationhedonicinsightmind controlmodel organismneural circuitneuromechanismneuroregulationnoveloptogeneticssensory integrationtreatment strategytwo photon microscopyvirtual reality
项目摘要
ABSTRACT
In normal individuals, food intake is strictly regulated by sensory, homeostatic and hedonic neural circuits, which
balance energy intake with energy expenditure. Failure to regulate food perception and appetite result in
maladaptive eating behaviors and an increase in the occurrence of metabolic syndromes and eating disorders.
Neural circuits that regulate food intake have been extensively investigated in rodent models. However, the
complexity of the mammalian brain makes it very challenging to explain the underlying molecular mechanisms
and circuit dynamics controlling food intake. I propose to use a genetically tractable model organism, the fly
(Drosophila melanogaster), to understand the fundamental principles of how the brain integrates the sensory
percept of food with the sensation of hunger to regulate food intake on the level of molecules, cells and circuits.
Flies are an excellent model to investigate these processes because they have 1000-fold fewer neurons in the
brain than mice, and yet they still show hunger states and specific food intake control remarkably similar to those
in vertebrates. Furthermore, the fly nervous system is more accessible for genetic modifications, anatomical
studies and monitoring the activity of large populations of neurons in behaving animals. Previously, I have shown
that flies, like humans, regulate their food intake by integrating the taste and nutrient value of food with hunger
sensation in the nervous system. I identified a novel class of excitatory interneurons (IN1) in the fly brain that
regulate food ingestion. In this project, we will first identify the IN1 food intake circuitry using optogenetics and
anterograde transsynaptic circuit tracing. Next, we will reveal how IN1 neurons and downstream circuitry change
activity during food search in a virtual reality foraging assay using two-photon microscopy. Finally, using cutting-
edge three-photon technology, we will capture the activity of IN1 neurons chronically in an intact fly as flies are
being food deprived. Functional dissection of IN1 circuitry will lead us to fundamental principles that the nervous
system uses to regulate food intake. In parallel with our food intake circuit dissection efforts, we also identified 8
evolutionary conserved genes in a large genetic screen for flies that fail to show compensatory feeding after 24
hours of food deprivation. We will anatomically and functionally dissect the role of these genes and the neural
circuits they control in regulating food intake. Finally, we will test the interaction of the candidate food intake
genes and the IN1 circuitry in regulating food perception and appetite control. Modelling the food intake and
appetite control systematically in a genetically tractable organism allows us to reveal new molecular and neural
control mechanisms. Once, we discover key mechanisms underlying food intake and appetite, we can search
for similar processes in more complex mammalian models and in patients suffering from obesity or eating
disorders to develop treatment strategies that will intervene with the pathogenesis of these life threating
diseases.
抽象的
在正常个体中,食物摄入受到感觉、稳态和享乐神经回路的严格调节,
平衡能量摄入与能量消耗。未能调节食物感知和食欲会导致
适应不良的饮食行为以及代谢综合征和饮食失调的发生率增加。
调节食物摄入的神经回路已在啮齿动物模型中得到广泛研究。然而,
哺乳动物大脑的复杂性使得解释其潜在的分子机制变得非常具有挑战性
和控制食物摄入的电路动力学。我建议使用一种遗传上易于处理的模型生物,即苍蝇
(黑腹果蝇),了解大脑如何整合感觉的基本原理
通过饥饿感对食物的感知,在分子、细胞和回路水平上调节食物摄入量。
果蝇是研究这些过程的绝佳模型,因为它们的神经元数量少了 1000 倍。
大脑比老鼠差,但它们仍然表现出饥饿状态和特定的食物摄入控制与老鼠非常相似
在脊椎动物中。此外,果蝇神经系统更容易进行基因改造、解剖学改造
研究和监测行为动物中大量神经元的活动。之前我已经展示过
苍蝇和人类一样,通过将食物的味道和营养价值与饥饿感相结合来调节食物摄入量
神经系统的感觉。我在果蝇大脑中发现了一类新型兴奋性中间神经元(IN1)
调节食物摄入。在这个项目中,我们将首先使用光遗传学和
顺行突触回路追踪。接下来,我们将揭示IN1神经元和下游电路如何变化
使用双光子显微镜进行虚拟现实觅食测定中食物搜索过程中的活动。最后,使用切割——
边缘三光子技术,我们将像果蝇一样长期捕获完整果蝇中 IN1 神经元的活动
被剥夺食物。 IN1 电路的功能剖析将引导我们了解神经系统的基本原理
系统用于调节食物摄入量。在我们的食物摄入回路解剖工作的同时,我们还确定了 8
对24岁后未能表现出补偿性摄食的果蝇进行大规模遗传筛选中的进化保守基因
数小时的食物匮乏。我们将从解剖学和功能上剖析这些基因和神经元的作用
它们控制调节食物摄入的回路。最后,我们将测试候选食物摄入量的相互作用
基因和 IN1 电路调节食物感知和食欲控制。模拟食物摄入量和
在遗传易驯化的有机体中系统地控制食欲使我们能够揭示新的分子和神经
控制机制。一旦我们发现了食物摄入和食欲的关键机制,我们就可以搜索
在更复杂的哺乳动物模型以及患有肥胖症或饮食的患者中进行类似的过程
制定治疗策略,干预这些危及生命的疾病的发病机制
疾病。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Of flies, mice and neural control of food intake: lessons to learn from both models.
- DOI:10.1016/j.conb.2022.102531
- 发表时间:2022-04
- 期刊:
- 影响因子:5.7
- 作者:
- 通讯作者:
Spatially resolved measurements of ballistic and total transmission in microscale tissue samples from 450 nm to 1624 nm
对 450 nm 至 1624 nm 范围内的微型组织样品中的弹道和总透射率进行空间分辨测量
- DOI:10.1364/boe.441844
- 发表时间:2021
- 期刊:
- 影响因子:3.4
- 作者:Mok, Aaron T.;Shea, Jamien;Wu, Chunyan;Xia, Fei;Tatarsky, Rose;Yapici, Nilay;Xu, Chris
- 通讯作者:Xu, Chris
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nilay Yapici其他文献
Nilay Yapici的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nilay Yapici', 18)}}的其他基金
Neural mechanisms of taste and metabolic state integration in the brainstem
脑干味觉和代谢状态整合的神经机制
- 批准号:
10524319 - 财政年份:2022
- 资助金额:
$ 40.14万 - 项目类别:
Investigating temperature sensitive neural circuits that regulate reproductive dormancy
研究调节生殖休眠的温度敏感神经回路
- 批准号:
10084271 - 财政年份:2020
- 资助金额:
$ 40.14万 - 项目类别:
Molecular and Neural Mechanisms regulating Foraging and Food Intake
调节觅食和食物摄入的分子和神经机制
- 批准号:
10454362 - 财政年份:2019
- 资助金额:
$ 40.14万 - 项目类别:
Molecular and Neural Mechanisms regulating Foraging and Food Intake
调节觅食和食物摄入的分子和神经机制
- 批准号:
10225381 - 财政年份:2019
- 资助金额:
$ 40.14万 - 项目类别:
Molecular and Neural Mechanisms regulating Foraging and Food Intake
调节觅食和食物摄入的分子和神经机制
- 批准号:
10387757 - 财政年份:2019
- 资助金额:
$ 40.14万 - 项目类别:
Molecular and Neural Mechanisms regulating Foraging and Food Intake
调节觅食和食物摄入的分子和神经机制
- 批准号:
9797692 - 财政年份:2019
- 资助金额:
$ 40.14万 - 项目类别:
相似国自然基金
稳健深度神经网络的误差分析及其在动物行为学领域的应用
- 批准号:12301651
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
以秀丽隐杆线虫为例探究动物在不同时间尺度行为的神经基础
- 批准号:32300829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于植物甾醇颗粒和凝胶粒子构建双相乳液凝胶模拟动物脂肪组织弹塑性行为和感官特性的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
群居灵长类动物对人类干扰的行为响应和适应机制研究——以四川白河国家级自然保护区川金丝猴为例
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
机器人-动物混合群体互动行为挖掘与强化研究
- 批准号:
- 批准年份:2021
- 资助金额:20 万元
- 项目类别:
相似海外基金
Deciphering the role of VTA dopaminergic signaling in memory consolidation during sleep
解读 VTA 多巴胺能信号在睡眠期间记忆巩固中的作用
- 批准号:
10677962 - 财政年份:2023
- 资助金额:
$ 40.14万 - 项目类别:
The Structure and Function of Ipsilateral Corticospinal Projections
同侧皮质脊髓投射的结构和功能
- 批准号:
10678301 - 财政年份:2023
- 资助金额:
$ 40.14万 - 项目类别:
Role of the central nucleus of the amygdala during ethanol-rewarded instrumental tasks
杏仁核中央核在乙醇奖励的仪器任务中的作用
- 批准号:
10679383 - 财政年份:2023
- 资助金额:
$ 40.14万 - 项目类别:
The Role of VEGF in the Development of Low Back Pain Following IVD Injury
VEGF 在 IVD 损伤后腰痛发展中的作用
- 批准号:
10668079 - 财政年份:2023
- 资助金额:
$ 40.14万 - 项目类别: