Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
基本信息
- 批准号:10669029
- 负责人:
- 金额:$ 45.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-06 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAwarenessBayesian NetworkBenchmarkingBenefits and RisksBig DataBig Data MethodsBiological MarkersCase StudyCharacteristicsClinicalClinical Decision Support SystemsComplexComputer AssistedComputer softwareComputersDataData ReportingData ScientistData SetDatabasesDecision MakingDecision Support SystemsDevelopmentDiseaseDoseDose FractionationElectronicsEnvironmentGenomicsGoalsGraphHostageHumanInfrastructureInstitutionIntelligenceInvestigationKnowledgeLearningLiverLungMachine LearningMalignant NeoplasmsMalignant neoplasm of liverMalignant neoplasm of lungMedicalMethodsModelingModernizationNatureNormal tissue morphologyOncologyOutcomePatient PreferencesPatientsPerformancePhysiciansPlayPrediction of Response to TherapyProceduresProteomicsPsychological reinforcementQuality of lifeRadiation Dose UnitRadiation therapyReaction TimeRegimenRegretsRewardsRiskRoleScheduleSiteSoftware ToolsSourceSystemTechniquesTestingTimeToxic effectTreatment ProtocolsUncertaintyWorkcancer radiation therapyclinical centerclinical decision supportclinical practiceclinical research sitecomputer human interactiondeep learningdeep reinforcement learningdemographicsexperiencefractionated radiationheuristicshigh rewardhigh riskimage guidedimaging biomarkerimprovedindividual patientirradiationknowledge baselearning strategymachine learning algorithmmachine learning frameworkmachine learning methodmultidisciplinaryneoplastic celloutcome predictionpersonalized decisionpersonalized medicinepoint of care testingpopulation basedpredicting responsepredictive markerprofiles in patientsprototyperadiation riskradiomicsrapid growthresponseside effectsocioeconomicssuccesssupervised learningsupport toolstherapy outcometooltreatment choicetreatment durationtreatment optimizationtreatment responsetumortumor eradicationusabilityuser-friendly
项目摘要
The complex environment of modern radiation therapy (RT) comprises data from a rich combination of patient-
specific information including: demographics, physical characteristics of high-energy dose, features subsequent
to repeated application of image-guidance (radiomics), and biological markers (genomics, proteomics, etc.),
generated before and/or over a treatment period that can span few days to several weeks. Rapid growth of these
available and untapped “pan-Omics” data, invites ample opportunities for Big data analytics to deliver on the
promise of personalized medicine in RT. This particularly true in promising but high-risk RT procedures such as
stereotactic body RT (SBRT), which have witnessed tremendous expansion due to clinical successes in early
disease stages and socio-economic benefits of shortened high dose treatments. This has led to the desire to
exploit these treatments into more advanced stages of cancer, however, the unknown risks associated with
increased toxicities hamper its potential. Therefore, robust clinical decision support systems (CDSSs) capable
of exploring the complex pan-Omics interaction landscape with the goal of exploiting known principles of
treatment response before and during the course of fractionated RT are urgently needed. The long-term goal of
this project is to overcome barriers related to prediction uncertainties and human-computer interactions, which
are currently limiting the ability to make personalized clinical decisions for real-time response-based adaptation
in radiotherapy from available data. To meet this need and overcome current challenges, we have assembled a
multidisciplinary team including: clinicians, medical physicists, data scientists, and human factor experts.
Specifically, we will develop and quantitively evaluate: (1) graph-based supervised machine learning algorithms
for robust prediction outcomes before and during RT; (2) deep reinforcement learning to dynamically optimize
treatment adaptation; and (3) a user-centered software prototype for RT decision support, with the broader goal
of building a comprehensive real-time framework for outcome modeling and response-based adaption in RT. We
hypothesize that the use of advanced machine learning techniques and user-centered tools will unlock the
potentials to move from current population-based approaches limited by subjective experiences and heuristic
rules into robust, patient-specific, user-friendly CDSSs. This approach and its corresponding software tool will
be tested within two clinical RT sites of lung and liver cancers, to demonstrate its versatility and highlight pertinent
human-computer factors and cancer specific issues.
Impact statement: Patient-specific big data are now available before and/or during RT courses, offering new
and untapped opportunities for personalized treatment. This study will overcome current shortcomings of
population-based approaches and data underuse in current RT practice by investigating and developing an
intelligent, computer-aided, user-centered, personalized CDSS and test its performance in rewarding but high-
risk RT scenarios. The approach is also applicable to other modern cancer regimens.
现代放射疗法(RT)的复杂环境包括来自患者丰富组合的数据
特定信息,包括:人口统计学,高能剂量的物理特征
重复应用图像引导(放射线学)和生物标记(基因组学,蛋白质组学等),
在治疗期之前和/或可能跨越几天到几周的治疗期。这些快速增长
可用和未开发的“泛词”数据,邀请了大数据分析的充足机会。
在RT中对个性化医学的承诺。这在承诺中尤其如此,但是高风险的RT程序,例如
立体定向身体RT(SBRT),由于早期的临床成功而见证了巨大的扩张
疾病阶段和缩短高剂量治疗的社会经济益处。这导致了渴望
但是,这些治疗方法将这些治疗方法分为更高级的癌症,但是,与之相关的未知风险
毒性增加阻碍了其潜力。因此,强大的临床决策支持系统(CDSS)
探索复杂的泛媒体交互环境,目的是利用已知原理
迫切需要在分离RT过程中和期间的治疗反应。长期目标
该项目旨在克服与预测不确定性和人类计算机相互作用有关的障碍,这些障碍
目前正在限制做出个性化临床决策以进行实时响应适应的能力
在可用数据的放射疗法中。为了满足这一需求并克服当前的挑战,我们已经组装了
多学科团队包括:临床医生,医学物理学家,数据科学家和人类因素专家。
具体而言,我们将开发和定量评估:(1)基于图的监督机器学习算法
在RT之前和期间的强大预测结果; (2)深入的强化学习以动态优化
治疗适应; (3)以用户为中心的软件原型用于RT决策支持,其目标更广泛
建立一个全面的实时框架,用于RT中的结果建模和基于响应的改编。我们
假设使用高级机器学习技术和以用户为中心的工具将解锁
通过主观经验和启发式限制的当前基于人群的方法的潜力
规则符合强大的,特定于患者的,用户友好的CDSSS。这种方法及其相应的软件工具将
在肺和肝癌的两个临床RT部位进行测试,以证明其多功能性并突出显示相关
人类计算机因素和特定于癌症的问题。
影响声明:现在和/或在RT课程期间提供特定于患者的大数据,提供新的
以及未开发的个性化治疗机会。这项研究将克服当前的缺点
通过调查和开发一个基于人群的方法和数据在当前的RT实践中无法使用
智能,计算机辅助,以用户为中心的个性化CDS,并在奖励但高度测试其性能
风险RT方案。该方法也适用于其他现代癌症方案。
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Radiomics in nuclear medicine and hybrid imaging: current standings on clinical applicability.
核医学和混合成像中的放射组学:临床适用性的现状。
- DOI:10.23736/s1824-4785.19.03222-9
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Veit-Haibach,Patrick;ElNaqa,Issam;Visvikis,Dimitris
- 通讯作者:Visvikis,Dimitris
A clinical decision support system for AI-assisted decision-making in response-adaptive radiotherapy (ARCliDS).
- DOI:10.1038/s41598-023-32032-6
- 发表时间:2023-03-31
- 期刊:
- 影响因子:4.6
- 作者:Niraula, Dipesh;Sun, Wenbo;Jin, Jionghua;Dinov, Ivo D.;Cuneo, Kyle;Jamaluddin, Jamalina;Matuszak, Martha M.;Luo, Yi;Lawrence, Theodore S.;Jolly, Shruti;Ten Haken, Randall K.;El Naqa, Issam
- 通讯作者:El Naqa, Issam
A Primer on Dose-Response Data Modeling in Radiation Therapy.
- DOI:10.1016/j.ijrobp.2020.11.020
- 发表时间:2021-05-01
- 期刊:
- 影响因子:7
- 作者:Moiseenko, Vitali;Marks, Lawrence B.;Grimm, Jimm;Jackson, Andrew;Milano, Michael T.;Hattangadi-Gluth, Jona A.;Huynh-Le, Minh-Phuong;Pettersson, Niclas;Yorke, Ellen;El Naqa, Issam
- 通讯作者:El Naqa, Issam
Current status of Radiomics for cancer management: Challenges versus opportunities for clinical practice.
癌症管理放射组学的现状:临床实践的挑战与机遇。
- DOI:10.1002/acm2.12982
- 发表时间:2020
- 期刊:
- 影响因子:2.1
- 作者:Li,Hua;ElNaqa,Issam;Rong,Yi
- 通讯作者:Rong,Yi
Oncology Informatics: Status Quo and Outlook.
- DOI:10.1159/000507586
- 发表时间:2020
- 期刊:
- 影响因子:3.5
- 作者:Putora PM;Baudis M;Beadle BM;El Naqa I;Giordano FA;Nicolay NH
- 通讯作者:Nicolay NH
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Issam M. El Naqa其他文献
Issam M. El Naqa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Issam M. El Naqa', 18)}}的其他基金
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 45.72万 - 项目类别:
Cerenkov Multi-Spectral Imaging (CMSI) for Adaptation and Real-Time Imaging in Radiotherapy
用于放射治疗中适应和实时成像的切伦科夫多光谱成像 (CMSI)
- 批准号:
10080509 - 财政年份:2020
- 资助金额:
$ 45.72万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10416058 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Federated Learning for Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景组学分析进行放射治疗最佳决策的联邦学习
- 批准号:
10417829 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10299634 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
9816658 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10250778 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10245972 - 财政年份:2018
- 资助金额:
$ 45.72万 - 项目类别:
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
9594556 - 财政年份:2018
- 资助金额:
$ 45.72万 - 项目类别:
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10470308 - 财政年份:2018
- 资助金额:
$ 45.72万 - 项目类别:
相似国自然基金
意识障碍康复的神经血管跨模态信息耦合预测-评估模型与自适应调控策略
- 批准号:62376190
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于神经功能影像技术研究腹侧基底核在丙泊酚诱导意识状态改变中的作用
- 批准号:82301443
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于丘脑-前额叶皮层环路的经耳迷走神经刺激对意识障碍的作用及机制研究
- 批准号:82302852
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DAVTA-5-HTDRN神经环路调控丙泊酚全麻小鼠意识改变的作用机制研究
- 批准号:82360242
- 批准年份:2023
- 资助金额:31.5 万元
- 项目类别:地区科学基金项目
基于操控员情境意识状态可解释Agent的智能交互触发机制研究
- 批准号:62376220
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10416058 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Federated Learning for Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景组学分析进行放射治疗最佳决策的联邦学习
- 批准号:
10417829 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10299634 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
9816658 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别:
Optimal Decision Making in Radiotherapy Using Panomics Analytics
使用全景分析进行放射治疗的最佳决策
- 批准号:
10250778 - 财政年份:2019
- 资助金额:
$ 45.72万 - 项目类别: