PREMIERE: A PREdictive Model Index and Exchange REpository
PREMIERE:预测模型索引和交换存储库
基本信息
- 批准号:10668938
- 负责人:
- 金额:$ 67.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAccess to InformationAddressAlgorithmsAreaAttentionBayesian NetworkBig DataBiological MarkersCalibrationCharacteristicsClinicalCommunitiesComputational BiologyComputer softwareDataData ScienceData SetData SourcesDecision MakingDecision TreesDermatologyDevelopmentDiagnosisDiagnosticDiagnostic ImagingEcosystemEducational workshopElectronic Health RecordEnvironmentEvaluationFAIR principlesFosteringFoundationsGoalsHumanImageImage AnalysisInformaticsLanguageLinkLiteratureMachine LearningMeasuresMedicalMetadataMethodologyMethodsModelingNatureOphthalmologyParameter EstimationPathway interactionsPerformancePopulationProliferatingPublicationsPublishingRadiology SpecialtyReceiver Operating CharacteristicsReportingReproducibilityReproductionResearch PersonnelRisk AssessmentSourceTechniquesTestingTrainingValidationVariantWorkbiomarker discoverybiomedical imagingcase-basedcohortcollaborative environmentcomparativecomputer aided detectionconvolutional neural networkdata harmonizationdata sharingdeep learningdeep learning modeldesignexperiencefeature selectionimprovedindexinginnovationinsightinterestinteroperabilitylearning networklung basal segmentlung cancer screeningmHealthmachine learning methodmachine learning predictionmodel developmentnovelnovel strategiesonline repositorypredictive modelingprognosticrepositorysoftware repositorystatistical and machine learningstatisticsstemtoolweb portal
项目摘要
The confluence of new machine learning (ML) data-driven approaches; increased computational power; and
access to the wealth of electronic health records (EHRs) and other emergent types of data (e.g., omics, imaging,
mHealth) are accelerating the development of biomedical predictive models. Such models range from traditional
statistical approaches (e.g., regression) through to more advanced deep learning techniques (e.g., convolutional
neural networks, CNNs), and span different tasks (e.g., biomarker/pathway discovery, diagnostic, prognostic).
Two issues have become evident: 1) as there are no comprehensive standards to support the dissemination of
these models, scientific reproducibility is problematic, given challenges in interpretation and implementation; and
2) as new models are put forth, methods to assess differences in performance, as well as insights into external
validity (i.e., transportability), are necessary. Tools moving beyond the sharing of data and model “executables”
are needed, capturing the (meta)data necessary to fully reproduce a model and its evaluation.
The objective of this R01 is the development of an informatics standard supporting the requisite information for
scientific reproducibility for statistical and ML-based biomedical predictive models; from this foundation, we then
develop new computational approaches to compare models' performance. We begin by extending the current
Predictive Model Markup Language (PMML) standard to fully characterize biomedical datasets and harmonize
variable definitions; to elucidate the algorithms involved in model creation (e.g., data preprocessing, parameter
estimation); and to explain the validation methodology. Importantly, models in this PMML format will become
findable, accessible, interoperable, and reusable (i.e., following FAIR principles). We then propose novel meth-
ods to compare and contrast predictive models, assessing transportability across datasets. While metrics exist
for comparing models (e.g., c-statistics, calibration), often the required case-level information is not available to
calculate these measures. We thus introduce an approach to simulate cases based on a model's reported da-
taset statistics, enabling such calculations. Different levels of transportability are then assigned to the metrics,
determining the extent to which a selected model is applicable to a given population/cohort (i.e., helping answer
the question, can I use this published model with my own data?). We tie these efforts together in our proposed
framework, the PREdictive Model Index & Exchange REpository (PREMIERE). We will develop an online portal
and repository for model sharing around PREMIERE, and our efforts will include fostering a community of users
to guide its development through workshops, model-thons, and other activities. To demonstrate these efforts,
we will bootstrap PREMIERE with predictive models from a targeted domain (risk assessment in imaging-based
lung cancer screening). Our efforts to evaluate these developments will engage a range of stakeholders (model
developers, users) to inform the completeness of our standard; and biostatisticians and clinical experts to guide
assessment of model transportability.
新机器学习(ML)数据驱动方法的汇合;增加计算能力;和
获取电子健康记录(EHR)和其他新兴数据类型的财富(例如,OMICS,Imaging,
MHealth)正在加速生物医学预测模型的发展。这样的型号从传统
统计方法(例如,回归)到更先进的深度学习技术(例如卷积
神经网络,CNN)和跨越不同的任务(例如,生物标志物/途径发现,诊断,预后)。
两个问题已成为证据:1)由于没有支持传播的全面标准
考虑到解释和实施方面的挑战,这些模型,科学的可重复性是有问题的。和
2)随着新模型的提出,评估性能差异的方法以及对外部的见解
有效性(即可运输能力)是必要的。工具超越了数据共享和模型“可执行文件”
需要捕获完全复制模型及其评估所需的(元)数据。
R01的目的是开发信息标准,支持必要的信息
基于统计和基于ML的生物医学预测模型的科学可重复性;从这个基础,我们然后
开发新的计算方法来比较模型的性能。我们首先扩展电流
预测模型标记语言(PMML)标准,以完全表征生物医学数据集并协调
可变定义;阐明涉及模型创建的算法(例如,数据预处理,参数
估计);并解释验证方法。重要的是,这种PMML格式的模型将成为
可找到,可访问,可互操作和可重复使用(即遵循公平原则)。然后,我们提出了新颖的Met-
比较和对比预测模型的OD,评估跨数据集的可运输性。虽然存在指标
为了比较模型(例如,C统计数据,校准),通常无法使用所需的案例级信息
计算这些措施。因此,我们引入了一种基于模型报告的DA-的模拟案例的方法
taset统计,可以计算。然后将不同级别的可运输性分配给指标,
确定所选模型适用于给定的人群/队列的程度(即帮助答案
问题,我可以将此已发表的模型与我自己的数据一起使用吗?)。我们将这些努力结合在一起
框架,预测模型索引和交换存储库(首映)。我们将开发一个在线门户网站
以及用于首映围绕模型共享的存储库,我们的努力将包括培养用户社区
通过研讨会,模特和其他活动来指导其发展。为了证明这些努力,
我们将通过目标领域的预测模型引导首映(基于成像的风险评估
肺癌筛查)。我们评估这些发展的努力将吸引一系列利益相关者(模型
开发人员,用户),以告知我们标准的完整性;以及生物统计学家和临床专家
评估模型可运输性。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prevention of Bias and Discrimination in Clinical Practice Algorithms.
预防临床实践算法中的偏见和歧视。
- DOI:10.1001/jama.2022.23867
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Shachar,Carmel;Gerke,Sara
- 通讯作者:Gerke,Sara
How AI can learn from the law: putting humans in the loop only on appeal.
- DOI:10.1038/s41746-023-00906-8
- 发表时间:2023-08-25
- 期刊:
- 影响因子:15.2
- 作者:
- 通讯作者:
Artificial intelligence tools in clinical neuroradiology: essential medico-legal aspects.
- DOI:10.1007/s00234-023-03152-7
- 发表时间:2023-07
- 期刊:
- 影响因子:2.8
- 作者:Hedderich, Dennis M.;Weisstanner, Christian;Van Cauter, Sofie;Federau, Christian;Edjlali, Myriam;Radbruch, Alexander;Gerke, Sara;Haller, Sven
- 通讯作者:Haller, Sven
Health Care AI and Patient Privacy-Dinerstein v Google.
医疗保健人工智能和患者隐私 - Dinerstein 诉 Google。
- DOI:10.1001/jama.2024.1110
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Duffourc,MindyNunez;Gerke,Sara
- 通讯作者:Gerke,Sara
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALEX BUI其他文献
ALEX BUI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALEX BUI', 18)}}的其他基金
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
- 批准号:
10801686 - 财政年份:2023
- 资助金额:
$ 67.35万 - 项目类别:
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
- 批准号:
10655487 - 财政年份:2022
- 资助金额:
$ 67.35万 - 项目类别:
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
- 批准号:
10473397 - 财政年份:2022
- 资助金额:
$ 67.35万 - 项目类别:
Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
- 批准号:
10707881 - 财政年份:2022
- 资助金额:
$ 67.35万 - 项目类别:
Biomedical Data Science Training Program for Precision Health Equity
精准健康公平生物医学数据科学培训计划
- 批准号:
10615779 - 财政年份:2022
- 资助金额:
$ 67.35万 - 项目类别:
Predicting who will fracture: Exploration of machine learning in the observational Women's Health Initiative Study dataset.
预测谁会骨折:观察性妇女健康倡议研究数据集中机器学习的探索。
- 批准号:
10370048 - 财政年份:2022
- 资助金额:
$ 67.35万 - 项目类别:
Biomedical Data Science Training Program for Precision Health Equity
精准健康公平生物医学数据科学培训计划
- 批准号:
10406058 - 财政年份:2022
- 资助金额:
$ 67.35万 - 项目类别:
Prediction of Chronic Kidney Disease by Simulation Modeling to Improve the Health of Minority Populations
通过模拟模型预测慢性肾脏病以改善少数民族人群的健康
- 批准号:
10523518 - 财政年份:2020
- 资助金额:
$ 67.35万 - 项目类别:
相似国自然基金
基于多模态敏感信息识别的自适应社交网络访问控制机制研究
- 批准号:62302540
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
供应链产品信息搜索系统的可验证性和隐私保护研究
- 批准号:61902124
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
信息中心网络中的访问控制和内容有效性保护关键技术研究
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
面向移动社交网络的智能化数据访问控制机制
- 批准号:61802083
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于密码的外包数据访问控制中的防信息推理研究
- 批准号:61862059
- 批准年份:2018
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Mechanical Causation of Corneal Stromal Matrix Synthesis and Fibrosis
角膜基质基质合成和纤维化的机械原因
- 批准号:
10659976 - 财政年份:2023
- 资助金额:
$ 67.35万 - 项目类别:
Improving Function and Reducing Opioid Use for Patients with Chronic Low Back Pain in Rural Communities through Improved Access to Physical Therapy using Telerehabilitation
通过远程康复改善物理治疗的可及性,改善农村社区慢性腰痛患者的功能并减少阿片类药物的使用
- 批准号:
10745146 - 财政年份:2023
- 资助金额:
$ 67.35万 - 项目类别:
Development of high-quality reference genomes for Anopheles squamosus and An. cydippis
开发鳞状按蚊和按蚊的高质量参考基因组。
- 批准号:
10725180 - 财政年份:2023
- 资助金额:
$ 67.35万 - 项目类别:
Smartphone app to examine effects of cannabis use on driving behavior
智能手机应用程序可检查大麻使用对驾驶行为的影响
- 批准号:
10458349 - 财政年份:2022
- 资助金额:
$ 67.35万 - 项目类别: