Clinical Epidemiology of Pediatric COVID-19 and MIS-C
儿科 COVID-19 和 MIS-C 的临床流行病学
基本信息
- 批准号:10633081
- 负责人:
- 金额:$ 17.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:18 year old2019-nCoVAccident and Emergency departmentAdultAffectAlgorithmsCOVID-19COVID-19 patientCOVID-19 severityCOVID-19 surveillanceCaringChildChild CareChildhoodClinicClinicalClinical DataCommunicable DiseasesComplementCountryCritical IllnessCross-Sectional StudiesDataData AnalysesData ScienceData SetDetectionDeteriorationDiagnosisDisciplineDiseaseEducational workshopElectronic Health RecordEmerging Communicable DiseasesEmotionalEnrollmentEpidemiologyFailureFrequenciesFrightFunctional disorderFundingFutureGoalsHealth Care CostsHealth systemHospitalizationHospitalized ChildHospitalsHourInfectionInformaticsInfrastructureInternationalInterventionInvestigationLaboratoriesLiteratureLong-Term EffectsLongitudinal StudiesLongitudinal cohortLongitudinal cohort studyMachine LearningManualsMedical centerMentored Patient-Oriented Research Career Development AwardMentorsMentorshipModelingMultisystem Inflammatory Syndrome in ChildrenNamesNatural Language ProcessingOrganOutcomePatient Self-ReportPatient-Focused OutcomesPatientsPediatric epidemiologyPhenotypePhysiciansPolicy MakerProtocols documentationQuality of Life AssessmentRecoveryRegistriesReportingResearchResearch PersonnelRespiratory DiseaseRiskRisk FactorsSARS-CoV-2 infectionSARS-CoV-2 positiveScienceScientistSeveritiesShockSiteSocietiesStandardizationState HospitalsStructureSymptomsSyndromeSystemTestingTherapeutic InterventionTrainingUnited StatesVentilatorVirusWorkbiomedical informaticsbody systemclinical careclinical epidemiologyclinical predictive modelclinical predictorsclinical riskcohortcomputer programcomputerized toolsdata accessdesigneconomic costexperiencefollow-upfuture pandemicgradient boostinghealth related quality of lifeimprovedlongitudinal analysismachine learning modelmathematical modelmultidisciplinarynovelnovel coronaviruspandemic diseasepredictive modelingpreventpreventive interventionprogramspublic health relevancerecruitsevere COVID-19skillsstructured datasystemic inflammatory responsetoolunstructured data
项目摘要
PROJECT SUMMARY / ABSTRACT
Although the novel Coronavirus (SARS-CoV-2) has accounted for significant health and economic costs
throughout the world, relatively little is known about its effect on children. The first pediatric case of SARS-
CoV-2 in the United States was reported on March 2, 2020, and within just three months, over 64,000 cases
were confirmed. Even though children, as a group, have been relatively spared from the effects of the virus,
there has been an increasing body of evidence to suggest that some may become critically ill. Since a number
of children with SARS-CoV-2 infections manifest with severe systemic inflammation and multi-organ
dysfunction, more research on determinants of disease and long-term outcomes of those affected is critical.
Dr. Oliveira is a pediatric infectious disease clinician whose long-term goal is to become an independently
funded physician-scientist, who integrates the disciplines of clinical epidemiology, data science, and biomedical
informatics to detect and respond to emerging infectious diseases. The work described in this proposal builds
on the scientific themes he developed throughout his prior training and aims to mechanistically understand the
effects of SARS-CoV-2 in children by integrating three different scientific tools: natural language processing,
machine learning, and clinical epidemiology. The first consideration for this K23 award period will be to use
novel computational tools to build automated surveillance and data-extraction system that can facilitate the
identification and tracking of incident cases of SARS-CoV-2 in children (Aim 1). Using this surveillance system,
Dr. Oliveira will create a comprehensive registry and conduct a rigorous, model-based investigation to derive a
state-of-the-art prediction model of clinical deterioration in children with SARS-CoV-2 (Aim 2). Last, he will
recruit a longitudinal cohort of SARS-Cov-2 and determine the frequency of complications and long-term
outcomes after recovery (Aim 3).
This mentored research experience will furnish Dr. Oliveira with skills and expertise in various aspects of
clinical epidemiology, including the establishment of surveillance systems, conducting longitudinal studies,
computer programing, and executing sophisticated analyses of the longitudinal data. Workshops, semester-
long courses will complement this practical experience, and one-on-one mentorship by a multidisciplinary team
of established, independently funded, internationally respected investigators and pioneers in the fields of
epidemiology, infectious diseases, biomedical informatics, and mathematical modeling.
After this work, Dr. Oliveira will have produced important science that could improve the care of all the children
affected by this pandemic. Furthermore, he will have gained a unique set of skills and built the necessary
infrastructure that will allow him to establish a research program integrating the disciplines of clinical
epidemiology, data science, and informatics to detect, prevent, and respond to future pandemics.
项目摘要 /摘要
尽管新颖的冠状病毒(SARS-COV-2)占了巨大的健康和经济成本
在世界范围内,对其对儿童的影响知之甚少。 SARS的第一个小儿病例
据报道,美国的COV-2于2020年3月2日报告,在短短三个月内,超过64,000例
被确认。即使作为一个小组,儿童也被相对幸免于病毒的影响,但
越来越多的证据表明,有些人可能患有重病。由于数字
患有SARS-COV-2感染的儿童表现出严重的全身炎症和多器官
功能障碍,对受影响者的疾病决定因素和长期结局的更多研究至关重要。
奥利维拉(Oliveira)博士是一位儿科传染病临床医生,其长期目标是成为独立的
资助的医师科学家,整合了临床流行病学,数据科学和生物医学学科
信息学以检测和应对新兴的传染病。该提案中描述的工作是
关于他在他先前培训的整个科学主题,并旨在机械理解
SARS-COV-2在儿童中的影响通过整合三种不同的科学工具:自然语言处理,
机器学习和临床流行病学。这个K23奖励期的首次考虑是使用
构建自动监视和数据算术系统的新型计算工具,可以促进
儿童SARS-COV-2事件案例的识别和跟踪(AIM 1)。使用此监视系统,
Oliveira博士将创建一个全面的注册表,并进行严格的基于模型的调查,以得出A
SARS-COV-2儿童临床恶化的最新预测模型(AIM 2)。最后,他会的
招募SARS-COV-2的纵向队列,并确定并发症的频率和长期
恢复后的结果(AIM 3)。
这项受过指导的研究经验将为Oliveira博士提供技能和专业知识
临床流行病学,包括建立监视系统,进行纵向研究,
计算机编程,并执行纵向数据的复杂分析。讲习班,学期 -
长课程将补充这种实用的经验,并由多学科团队进行一对一的指导
在该领域的成熟,独立资助,国际尊重的调查员和开拓者
流行病学,传染病,生物医学信息学和数学建模。
在这项工作之后,奥利维拉博士将产生重要的科学,以改善所有孩子的照顾
受这个大流行的影响。此外,他将获得一套独特的技能,并建立必要的技能
基础设施将使他能够建立一项整合临床学科的研究计划
流行病学,数据科学和信息学,以检测,预防和应对未来的大流行病。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Expedited Partner Therapy: A Multicomponent Initiative to Boost Provider Counseling.
加速合作伙伴治疗:促进提供者咨询的多组成部分举措。
- DOI:10.1097/olq.0000000000001894
- 发表时间:2024
- 期刊:
- 影响因子:3.1
- 作者:Markowitz,MelissaA;Ackerman-Banks,ChristinaM;Oliveira,CarlosR;Fashina,Oluwatomini;Pathy,ShefaliR;Sheth,SanginiS
- 通讯作者:Sheth,SanginiS
Routine saliva testing for SARS-CoV-2 in children: Methods for partnering with community childcare centers.
- DOI:10.3389/fpubh.2023.1003158
- 发表时间:2023
- 期刊:
- 影响因子:5.2
- 作者:Rayack, Erica J.;Askari, Hibah Mahwish;Zirinsky, Elissa;Lapidus, Sarah;Sheikha, Hassan;Peno, Chikondi;Kazemi, Yasaman;Yolda-Carr, Devyn;Liu, Chen;Grubaugh, Nathan D.;Ko, Albert I.;Wyllie, Anne L.;Spatz, Erica S.;Oliveira, Carlos R.;Bei, Amy K.
- 通讯作者:Bei, Amy K.
Severe Acute Respiratory Syndrome Coronavirus 2 Testing in Children in a Large Regional US Health System During the Coronavirus Disease 2019 Pandemic.
- DOI:10.1097/inf.0000000000003024
- 发表时间:2021-03-01
- 期刊:
- 影响因子:0
- 作者:Peaper DR;Murdzek C;Oliveira CR;Murray TS
- 通讯作者:Murray TS
Pediatric COVID-19 Health Disparities and Vaccine Equity.
- DOI:10.1093/jpids/piac091
- 发表时间:2022-12-07
- 期刊:
- 影响因子:3.2
- 作者:
- 通讯作者:
Bayesian Model Averaging to Account for Model Uncertainty in Estimates of a Vaccine's Effectiveness.
- DOI:10.2147/clep.s378039
- 发表时间:2022
- 期刊:
- 影响因子:3.9
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Rafael Oliveira其他文献
Carlos Rafael Oliveira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos Rafael Oliveira', 18)}}的其他基金
Clinical Epidemiology of Pediatric COVID-19 and MIS-C
儿科 COVID-19 和 MIS-C 的临床流行病学
- 批准号:
10191775 - 财政年份:2021
- 资助金额:
$ 17.7万 - 项目类别:
Clinical Epidemiology of Pediatric COVID-19 and MIS-C
儿科 COVID-19 和 MIS-C 的临床流行病学
- 批准号:
10396077 - 财政年份:2021
- 资助金额:
$ 17.7万 - 项目类别:
相似国自然基金
2019新型冠状病毒的溯源与基因演化
- 批准号:
- 批准年份:2020
- 资助金额:150 万元
- 项目类别:专项基金项目
2019-nCoV感染导致人体淋巴细胞减低机制及其对机体免疫功能影响
- 批准号:82030002
- 批准年份:2020
- 资助金额:135 万元
- 项目类别:专项基金项目
基于人口流动大数据的新型冠状病毒(2019-nCoV)输出感染风险及接触网络传播模型研究
- 批准号:
- 批准年份:2020
- 资助金额:135 万元
- 项目类别:
云南驯养野生动物中新型冠状病毒(2019-nCoV)溯源调查与验证
- 批准号:
- 批准年份:2020
- 资助金额:140 万元
- 项目类别:
新型冠状病毒(2019-nCoV)反向遗传系统及啮齿类感染模型的建立与应用
- 批准号:
- 批准年份:2020
- 资助金额:150 万元
- 项目类别:
相似海外基金
AIDS Clinical Trials Group for Research on Therapeutics for HIV and Related Infections
艾滋病毒及相关感染治疗研究艾滋病临床试验小组
- 批准号:
10812944 - 财政年份:2023
- 资助金额:
$ 17.7万 - 项目类别:
Beta cell dysfunction as an acute and a post acute sequelae of COVID19
β 细胞功能障碍是 COVID19 的急性和急性后遗症
- 批准号:
10505064 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别:
Beta cell dysfunction as an acute and a post acute sequelae of COVID19
β 细胞功能障碍是 COVID19 的急性和急性后遗症
- 批准号:
10674887 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别:
A novel robotic wastewater analysis system to quantify opioid exposure and treatment in residential communities
一种新型机器人废水分析系统,用于量化住宅社区中阿片类药物的暴露和处理
- 批准号:
10549579 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别:
Leadership and Operations Center (LOC), AIDS Clinical Trials Group (ACTG); LOC 1/
领导和运营中心(LOC)、艾滋病临床试验组(ACTG);
- 批准号:
10594377 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别: