Clinical Epidemiology of Pediatric COVID-19 and MIS-C
儿科 COVID-19 和 MIS-C 的临床流行病学
基本信息
- 批准号:10633081
- 负责人:
- 金额:$ 17.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:18 year old2019-nCoVAccident and Emergency departmentAdultAffectAlgorithmsCOVID-19COVID-19 patientCOVID-19 severityCOVID-19 surveillanceCaringChildChild CareChildhoodClinicClinicalClinical DataCommunicable DiseasesComplementCountryCritical IllnessCross-Sectional StudiesDataData AnalysesData ScienceData SetDetectionDeteriorationDiagnosisDisciplineDiseaseEducational workshopElectronic Health RecordEmerging Communicable DiseasesEmotionalEnrollmentEpidemiologyFailureFrequenciesFrightFunctional disorderFundingFutureGoalsHealth Care CostsHealth systemHospitalizationHospitalized ChildHospitalsHourInfectionInformaticsInfrastructureInternationalInterventionInvestigationLaboratoriesLiteratureLong-Term EffectsLongitudinal StudiesLongitudinal cohortLongitudinal cohort studyMachine LearningManualsMedical centerMentored Patient-Oriented Research Career Development AwardMentorsMentorshipModelingMultisystem Inflammatory Syndrome in ChildrenNamesNatural Language ProcessingOrganOutcomePatient Self-ReportPatient-Focused OutcomesPatientsPediatric epidemiologyPhenotypePhysiciansPolicy MakerProtocols documentationQuality of Life AssessmentRecoveryRegistriesReportingResearchResearch PersonnelRespiratory DiseaseRiskRisk FactorsSARS-CoV-2 infectionSARS-CoV-2 positiveScienceScientistSeveritiesShockSiteSocietiesStandardizationState HospitalsStructureSymptomsSyndromeSystemTestingTherapeutic InterventionTrainingUnited StatesVentilatorVirusWorkbiomedical informaticsbody systemclinical careclinical epidemiologyclinical predictive modelclinical predictorsclinical riskcohortcomputer programcomputerized toolsdata accessdesigneconomic costexperiencefollow-upfuture pandemicgradient boostinghealth related quality of lifeimprovedlongitudinal analysismachine learning modelmathematical modelmultidisciplinarynovelnovel coronaviruspandemic diseasepredictive modelingpreventpreventive interventionprogramspublic health relevancerecruitsevere COVID-19skillsstructured datasystemic inflammatory responsetoolunstructured data
项目摘要
PROJECT SUMMARY / ABSTRACT
Although the novel Coronavirus (SARS-CoV-2) has accounted for significant health and economic costs
throughout the world, relatively little is known about its effect on children. The first pediatric case of SARS-
CoV-2 in the United States was reported on March 2, 2020, and within just three months, over 64,000 cases
were confirmed. Even though children, as a group, have been relatively spared from the effects of the virus,
there has been an increasing body of evidence to suggest that some may become critically ill. Since a number
of children with SARS-CoV-2 infections manifest with severe systemic inflammation and multi-organ
dysfunction, more research on determinants of disease and long-term outcomes of those affected is critical.
Dr. Oliveira is a pediatric infectious disease clinician whose long-term goal is to become an independently
funded physician-scientist, who integrates the disciplines of clinical epidemiology, data science, and biomedical
informatics to detect and respond to emerging infectious diseases. The work described in this proposal builds
on the scientific themes he developed throughout his prior training and aims to mechanistically understand the
effects of SARS-CoV-2 in children by integrating three different scientific tools: natural language processing,
machine learning, and clinical epidemiology. The first consideration for this K23 award period will be to use
novel computational tools to build automated surveillance and data-extraction system that can facilitate the
identification and tracking of incident cases of SARS-CoV-2 in children (Aim 1). Using this surveillance system,
Dr. Oliveira will create a comprehensive registry and conduct a rigorous, model-based investigation to derive a
state-of-the-art prediction model of clinical deterioration in children with SARS-CoV-2 (Aim 2). Last, he will
recruit a longitudinal cohort of SARS-Cov-2 and determine the frequency of complications and long-term
outcomes after recovery (Aim 3).
This mentored research experience will furnish Dr. Oliveira with skills and expertise in various aspects of
clinical epidemiology, including the establishment of surveillance systems, conducting longitudinal studies,
computer programing, and executing sophisticated analyses of the longitudinal data. Workshops, semester-
long courses will complement this practical experience, and one-on-one mentorship by a multidisciplinary team
of established, independently funded, internationally respected investigators and pioneers in the fields of
epidemiology, infectious diseases, biomedical informatics, and mathematical modeling.
After this work, Dr. Oliveira will have produced important science that could improve the care of all the children
affected by this pandemic. Furthermore, he will have gained a unique set of skills and built the necessary
infrastructure that will allow him to establish a research program integrating the disciplines of clinical
epidemiology, data science, and informatics to detect, prevent, and respond to future pandemics.
项目概要/摘要
尽管新型冠状病毒(SARS-CoV-2)造成了巨大的健康和经济损失
在世界各地,人们对其对儿童的影响知之甚少。第一例儿科SARS病例——
美国于 2020 年 3 月 2 日报告了 CoV-2,短短三个月内就有超过 64,000 例病例
被证实。尽管儿童作为一个群体相对免受病毒的影响,
越来越多的证据表明,有些人可能会病情危重。由于一个数
SARS-CoV-2 感染儿童表现为严重的全身炎症和多器官
功能障碍,对疾病的决定因素和受影响者的长期结果进行更多研究至关重要。
Oliveira 博士是一名儿科传染病临床医生,其长期目标是成为一名独立的
受资助的医师科学家,整合了临床流行病学、数据科学和生物医学等学科
检测和应对新出现的传染病的信息学。本提案中描述的工作构建
他在之前的培训中发展了科学主题,旨在机械地理解
通过整合三种不同的科学工具来研究 SARS-CoV-2 对儿童的影响:自然语言处理、
机器学习和临床流行病学。 K23 奖励期的首要考虑因素是使用
新颖的计算工具来构建自动监视和数据提取系统,以促进
识别和追踪儿童 SARS-CoV-2 病例(目标 1)。使用这个监控系统,
奥利维拉博士将创建一个全面的注册表,并进行严格的、基于模型的调查,以获得
SARS-CoV-2 儿童临床恶化的最先进预测模型(目标 2)。最后,他将
招募 SARS-Cov-2 的纵向队列并确定并发症的频率和长期
恢复后的结果(目标 3)。
这种受指导的研究经验将为奥利维拉博士提供各个方面的技能和专业知识
临床流行病学,包括建立监测系统、进行纵向研究、
计算机编程,并对纵向数据进行复杂的分析。研讨会,学期-
长期课程将补充这种实践经验以及多学科团队的一对一指导
领域内知名的、独立资助的、受国际尊敬的研究人员和先驱者
流行病学、传染病、生物医学信息学和数学建模。
完成这项工作后,奥利维拉博士将取得重要的科学成果,可以改善所有儿童的护理
受此次疫情影响。此外,他将获得一套独特的技能并建立必要的技能
基础设施将使他能够建立一个整合临床学科的研究项目
流行病学、数据科学和信息学,用于检测、预防和应对未来的流行病。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Expedited Partner Therapy: A Multicomponent Initiative to Boost Provider Counseling.
加速合作伙伴治疗:促进提供者咨询的多组成部分举措。
- DOI:10.1097/olq.0000000000001894
- 发表时间:2024
- 期刊:
- 影响因子:3.1
- 作者:Markowitz,MelissaA;Ackerman-Banks,ChristinaM;Oliveira,CarlosR;Fashina,Oluwatomini;Pathy,ShefaliR;Sheth,SanginiS
- 通讯作者:Sheth,SanginiS
Routine saliva testing for SARS-CoV-2 in children: Methods for partnering with community childcare centers.
- DOI:10.3389/fpubh.2023.1003158
- 发表时间:2023
- 期刊:
- 影响因子:5.2
- 作者:Rayack, Erica J.;Askari, Hibah Mahwish;Zirinsky, Elissa;Lapidus, Sarah;Sheikha, Hassan;Peno, Chikondi;Kazemi, Yasaman;Yolda-Carr, Devyn;Liu, Chen;Grubaugh, Nathan D.;Ko, Albert I.;Wyllie, Anne L.;Spatz, Erica S.;Oliveira, Carlos R.;Bei, Amy K.
- 通讯作者:Bei, Amy K.
Severe Acute Respiratory Syndrome Coronavirus 2 Testing in Children in a Large Regional US Health System During the Coronavirus Disease 2019 Pandemic.
- DOI:10.1097/inf.0000000000003024
- 发表时间:2021-03-01
- 期刊:
- 影响因子:0
- 作者:Peaper DR;Murdzek C;Oliveira CR;Murray TS
- 通讯作者:Murray TS
Pediatric COVID-19 Health Disparities and Vaccine Equity.
- DOI:10.1093/jpids/piac091
- 发表时间:2022-12-07
- 期刊:
- 影响因子:3.2
- 作者:
- 通讯作者:
Bayesian Model Averaging to Account for Model Uncertainty in Estimates of a Vaccine's Effectiveness.
- DOI:10.2147/clep.s378039
- 发表时间:2022
- 期刊:
- 影响因子:3.9
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Rafael Oliveira其他文献
Carlos Rafael Oliveira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos Rafael Oliveira', 18)}}的其他基金
Clinical Epidemiology of Pediatric COVID-19 and MIS-C
儿科 COVID-19 和 MIS-C 的临床流行病学
- 批准号:
10191775 - 财政年份:2021
- 资助金额:
$ 17.7万 - 项目类别:
Clinical Epidemiology of Pediatric COVID-19 and MIS-C
儿科 COVID-19 和 MIS-C 的临床流行病学
- 批准号:
10396077 - 财政年份:2021
- 资助金额:
$ 17.7万 - 项目类别:
相似国自然基金
2019-nCoV“不典型症状”感染者的宿主因素及其作用机制研究
- 批准号:
- 批准年份:2020
- 资助金额:150 万元
- 项目类别:专项基金项目
新型冠状病毒2019-nCoV复制复合体关键蛋白的功能与潜在药物靶点研究
- 批准号:
- 批准年份:2020
- 资助金额:150 万元
- 项目类别:专项基金项目
2019新型冠状病毒的溯源与基因演化
- 批准号:
- 批准年份:2020
- 资助金额:150 万元
- 项目类别:专项基金项目
2019-nCoV蝙蝠及人群代表性流行株致病能力的比较研究
- 批准号:
- 批准年份:2020
- 资助金额:150 万元
- 项目类别:专项基金项目
新型冠状病毒2019-nCoV重要复制加帽酶的工作机制研究
- 批准号:
- 批准年份:2020
- 资助金额:150 万元
- 项目类别:专项基金项目
相似海外基金
AIDS Clinical Trials Group for Research on Therapeutics for HIV and Related Infections
艾滋病毒及相关感染治疗研究艾滋病临床试验小组
- 批准号:
10812944 - 财政年份:2023
- 资助金额:
$ 17.7万 - 项目类别:
Beta cell dysfunction as an acute and a post acute sequelae of COVID19
β 细胞功能障碍是 COVID19 的急性和急性后遗症
- 批准号:
10505064 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别:
Beta cell dysfunction as an acute and a post acute sequelae of COVID19
β 细胞功能障碍是 COVID19 的急性和急性后遗症
- 批准号:
10674887 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别:
A novel robotic wastewater analysis system to quantify opioid exposure and treatment in residential communities
一种新型机器人废水分析系统,用于量化住宅社区中阿片类药物的暴露和处理
- 批准号:
10549579 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别:
Leadership and Operations Center (LOC), AIDS Clinical Trials Group (ACTG); LOC 1/
领导和运营中心(LOC)、艾滋病临床试验组(ACTG);
- 批准号:
10594377 - 财政年份:2022
- 资助金额:
$ 17.7万 - 项目类别: