Stanford Center for Connecting DNA Variants to Function and Phenotype
斯坦福大学 DNA 变异与功能和表型关联中心
基本信息
- 批准号:10633286
- 负责人:
- 金额:$ 188.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-03 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAdultAffectBiologicalBiological AssayBiological ModelsBiologyCRISPR interferenceCRISPR screenCRISPR/Cas technologyCalibrationCardiacCardiac MyocytesCardiovascular DiseasesCardiovascular systemCatalogsCell Differentiation processCell physiologyCellsChildChromatinClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsComplexComputer ModelsComputer softwareDNADataData SetDevelopmentDiseaseDisease PathwayDisease modelElementsEndothelial CellsEnhancersEvaluationFutureGene ExpressionGene Expression RegulationGenesGeneticGenetic TranscriptionGenomeGenome engineeringHeart DiseasesHumanHuman GeneticsHuman GenomeLearningLogicMacrophageMapsMeasuresMethodsModelingMolecularMusMutagenesisNational Human Genome Research InstituteNucleotidesPhenotypePrintingProtocols documentationRNARegulatory ElementSmooth Muscle MyocytesSurveysTechnologyTestingTissuesUniversitiesUntranslated RNAVariantWorkcandidate identificationcardiovascular disorder riskcausal variantcell typedata sharingdesigndisorder riskexperimental studyfunctional genomicsgenetic elementgenetic variantgenome wide association studygenomic toolsgenomic variationhuman diseasehuman pluripotent stem cellimprovedin vivoinnovationinnovative technologiesinsightnew technologynovel strategiespredictive modelingprime editingpromoterrisk varianttooltrait
项目摘要
PROJECT SUMMARY
Genome-wide association studies have now discovered tens of thousands of noncoding variants associated with
human diseases and traits. It has proven challenging to interpret these associations. A majority of causal variants
lie in the noncoding genome and appear to affect DNA cis-regulatory elements, which control the logic of gene
expression and could point us to new cell types, genes, and pathways for disease. However, we have lacked
the tools needed to systematically characterize how these cis-regulatory variants and elements impact genome
function and phenotype.
Our team at Stanford University has now developed innovative single-cell, CRISPR mapping, and computational
technologies that will enable identifying and functionally characterizing many thousands of elements and variants
directly in the human genome. These tools include single-cell ATAC-seq to identify candidate elements in cells
and tissues; sensitive CRISPR tiling methods to connect thousands of elements and variants to effects on gene
expression and cellular phenotypes; and the ABC and BPNet models to predict how disease variants regulate
gene expression. Together, these technologies suggest a new strategy to systematically connect DNA variants
and elements to function and phenotype.
Here we will apply these new technologies in collaboration with the NHGRI Impact of Genomic Variation on
Function Consortium. We will use four cardiovascular cell types derived from human pluripotent stem cells as
model systems. First, we will leverage single-cell maps of cardiac differentiation and development to select
elements and risk variants for adult and children’s heart diseases likely to control cardiovascular cell function.
Second, we will apply single-cell CRISPR tools to measure the effects of thousands of unbiased elements and
variants on gene expression, and connect prioritized disease variants to target genes, cellular phenotypes, and
tissue phenotypes. Third, we will leverage these experimental datasets to calibrate and refine computational
models to build a variant-element-phenotype catalog across many human cell types and diseases. Fourth, we
will enable future studies by sharing data, protocols, and software, and by conducting systematic evaluations of
CRISPR technologies and computational models to connect variants to phenotypes. Together, these studies will
advance our understanding of how DNA variants and elements impact genome function and demonstrate a novel
strategy to leverage high-throughput genomic tools to understand biological mechanisms of human diseases.
项目概要
全基因组关联研究现已发现数以万计的非编码变异
人类疾病和特征的解释已被证明具有挑战性。
位于非编码基因组中,似乎影响控制基因逻辑的 DNA 顺式调控元件
表达并可以为我们指出新的细胞类型、基因和疾病途径。
系统地表征这些顺式调控变异和元件如何影响基因组所需的工具
功能和表型。
我们斯坦福大学的团队现已开发出创新的单细胞、CRISPR 作图和计算技术
能够识别数千种元素和变体并对其进行功能表征的技术
这些工具包括用于识别细胞中候选元件的单细胞 ATAC-seq。
和组织;敏感的 CRISPR 拼接方法将数千个元素和变异连接到对基因的影响
表达和细胞表型;以及 ABC 和 BPNet 模型来预测疾病变异如何调节
这些技术共同提出了一种系统连接 DNA 变体的新策略。
以及功能和表型的元素。
在这里,我们将与 NHGRI Impact of Genomic Variation 合作应用这些新技术
我们将使用源自人类多能干细胞的四种心血管细胞类型。
首先,我们将利用心脏分化和发育的单细胞图来选择。
可能控制心血管细胞功能的成人和儿童心脏病的要素和风险变异。
其次,我们将应用单细胞 CRISPR 工具来测量数千个无偏差元素的影响,并
基因表达的变异,并将优先的疾病变异与目标基因、细胞表型和
第三,我们将利用这些实验数据集来校准和完善计算。
第四,我们建立了涵盖多种人类细胞类型和疾病的变异元件表型目录的模型。
将通过共享数据、协议和软件以及进行系统评估来实现未来的研究
这些研究将结合 CRISPR 技术和计算模型来将变异与表型联系起来。
我们对 DNA 变异如何发展以及元素如何影响基因组功能的理解,并展示了一种新颖的方法
利用高通量基因组工具来了解人类疾病的生物学机制的策略。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JESSE M ENGREITZ其他文献
JESSE M ENGREITZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JESSE M ENGREITZ', 18)}}的其他基金
High-throughput cellular genetics to connect noncoding variants to coronary artery disease genes
高通量细胞遗传学将非编码变异与冠状动脉疾病基因连接起来
- 批准号:
10659996 - 财政年份:2023
- 资助金额:
$ 188.25万 - 项目类别:
MorPhiC: Constructing a Catalog of Cellular Programs to Identify and Annotate Human Disease Genes
MorPhiC:构建细胞程序目录来识别和注释人类疾病基因
- 批准号:
10733164 - 财政年份:2023
- 资助金额:
$ 188.25万 - 项目类别:
Mapping, modeling, and manipulating 3D contacts in vascular cells to connect risk variants to disease genes
绘制、建模和操作血管细胞中的 3D 接触,将风险变异与疾病基因联系起来
- 批准号:
10446856 - 财政年份:2022
- 资助金额:
$ 188.25万 - 项目类别:
Mapping, modeling, and manipulating 3D contacts in vascular cells to connect risk variants to disease genes
绘制、建模和操作血管细胞中的 3D 接触,将风险变异与疾病基因联系起来
- 批准号:
10591585 - 财政年份:2022
- 资助金额:
$ 188.25万 - 项目类别:
Systematic mapping and prediction of gene-enhancer connections
基因增强子连接的系统绘图和预测
- 批准号:
10318508 - 财政年份:2021
- 资助金额:
$ 188.25万 - 项目类别:
Stanford Center for Connecting DNA Variants to Function and Phenotype
斯坦福大学 DNA 变异与功能和表型关联中心
- 批准号:
10480918 - 财政年份:2021
- 资助金额:
$ 188.25万 - 项目类别:
Stanford Center for Connecting DNA Variants to Function and Phenotype
斯坦福大学 DNA 变异与功能和表型关联中心
- 批准号:
10295739 - 财政年份:2021
- 资助金额:
$ 188.25万 - 项目类别:
Mapping enhancer-gene regulation in single cells to connect genetic variants to target genes and cell types
绘制单细胞中的增强子基因调控图谱,将遗传变异与目标基因和细胞类型联系起来
- 批准号:
10434907 - 财政年份:2020
- 资助金额:
$ 188.25万 - 项目类别:
Systematic mapping and prediction of gene-enhancer connections
基因增强子连接的系统绘图和预测
- 批准号:
10153858 - 财政年份:2020
- 资助金额:
$ 188.25万 - 项目类别:
Systematic mapping and prediction of gene-enhancer connections
基因增强子连接的系统绘图和预测
- 批准号:
10365988 - 财政年份:2020
- 资助金额:
$ 188.25万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
- 批准号:31900778
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
In vivo precision genome editing to correct genetic disease
体内精准基因组编辑以纠正遗传疾病
- 批准号:
10771419 - 财政年份:2023
- 资助金额:
$ 188.25万 - 项目类别:
Mechanistic studies of the genetic contribution of desmoplakin to pulmonary fibrosis in alveolar type 2 cells
桥粒斑蛋白对肺泡2型细胞肺纤维化的遗传贡献机制研究
- 批准号:
10736228 - 财政年份:2023
- 资助金额:
$ 188.25万 - 项目类别:
Endogenous retrovirus in joint aging and osteoarthritis development
内源性逆转录病毒在关节衰老和骨关节炎发展中的作用
- 批准号:
10719364 - 财政年份:2023
- 资助金额:
$ 188.25万 - 项目类别:
Defining mechanisms of metabolic-epigenetic crosstalk that drive glioma initiation
定义驱动神经胶质瘤发生的代谢-表观遗传串扰机制
- 批准号:
10581192 - 财政年份:2023
- 资助金额:
$ 188.25万 - 项目类别:
Combined bromodomain and CDK4/6 inhibition in NUT Carcinoma and other solid tumors
溴结构域和 CDK4/6 联合抑制 NUT 癌和其他实体瘤
- 批准号:
10577265 - 财政年份:2023
- 资助金额:
$ 188.25万 - 项目类别: