Systematic mapping and prediction of gene-enhancer connections
基因增强子连接的系统绘图和预测
基本信息
- 批准号:10153858
- 负责人:
- 金额:$ 28.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffectAllelesArchitectureB-LymphocytesBiologicalBiological ModelsBiologyCRISPR interferenceCell LineCell modelCell physiologyCellsChIP-seqChromatinChromosome MappingChromosomesClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsComplexComputer ModelsDNase I hypersensitive sites sequencingDataData ElementDevelopmentDiseaseDistalEnhancersEnvironmentExperimental ModelsGene ExpressionGene Expression RegulationGenesGenetic DiseasesGenetic VariationGenomeGenomicsHeritabilityHi-CHumanHuman Cell LineHuman GenomeImmuneImmune System DiseasesIndividualLaboratoriesLeadLigandsLocationMapsMeasuresMedicineMethodsModelingModernizationMolecularMolecular ConformationPhasePlayPropertyRegulationRegulator GenesRegulatory ElementResearchRoleScienceSingle Nucleotide PolymorphismSpecific qualifier valueSpecificitySystemT-LymphocyteTestingUnited States National Institutes of HealthUniversitiesUntranslated RNAUpdateVariantWorkbasecareercell typecollaborative environmentdisorder riskexperimental studygenetic variantgenome editinggenome wide association studygenome-widehuman diseaseinsightmonocytenetwork architecturenovelpleiotropismpredictive toolspromotersystem architecturetherapeutic developmenttoolworking group
项目摘要
A fundamental challenge in modern biology is to identify the noncoding regulatory elements (REs) that control
gene expression, which could inform the interpretation of the thousands of noncoding genetic variants
associated with human diseases through genome-wide association studies (GWAS). Interpreting the
functions of REs and noncoding genetic variants has been challenging because we have lacked the ability
to systematically perturb REs in their native locations in the genome. To address this challenge, I recently
developed a high-throughput method to map the functions of thousands of REs in their native genomic
contexts and measure their quantitative effects on gene expression (CRISPRi tiling). I also developed a novel
analytical approach to model and predict gene-RE connections based on maps of chromatin state and 3D
folding. Together, these advances motivate a strategy to allow systematic mapping of all of the REs that
control any given gene in any given cell type. In the K99 phase, I propose to: (i) apply CRISPRi tiling to map
~6,000 additional gene-RE connections, and (ii) use these data to extend and optimize a model to predict
gene-RE connections from chromatin state. I will use human immune cells as a model system to compare
predictions across cell types. In the R00 phase, I will apply these tools to (iii) characterize the network
architecture of gene-RE connections across hundreds of cell types, and (iv) edit single-nucleotide variants
identified by the model in cellular models to characterize their effects on gene expression. Together, these
aims will provide insights into the mechanisms and architecture of gene-RE connectivity, generate tools for
mapping gene-RE connectivity in any cell type, and reveal mechanisms underlying common diseases.
Stanford University is an ideal environment for my independent laboratory, providing all of the facilities
needed for the proposed research and a rich interdisciplinary environment for collaborative studies. Together,
these aims will launch my independent scientific career at the interface of regulatory genomics and disease
genetics.
现代生物学的一个基本挑战是识别控制的非编码调控元件(RE)
基因表达,可以为数千种非编码遗传变异的解释提供信息
通过全基因组关联研究(GWAS)与人类疾病相关。解释
RE 和非编码遗传变异的功能一直具有挑战性,因为我们缺乏能力
系统地干扰基因组中天然位置的 RE。为了应对这一挑战,我最近
开发了一种高通量方法来绘制天然基因组中数千个 RE 的功能
环境并测量它们对基因表达的定量影响(CRISPRi 平铺)。我还开发了小说
基于染色质状态和 3D 图来建模和预测基因-RE 连接的分析方法
折叠式的。这些进步共同推动了一项战略,允许系统地绘制所有可再生能源
控制任何给定细胞类型中的任何给定基因。在K99阶段,我建议:(i)应用CRISPRi平铺来绘制图谱
约 6,000 个额外的基因-RE 连接,以及 (ii) 使用这些数据来扩展和优化模型以进行预测
来自染色质状态的基因-RE 连接。我将使用人类免疫细胞作为模型系统来比较
跨细胞类型的预测。在 R00 阶段,我将应用这些工具来 (iii) 表征网络
跨数百种细胞类型的基因-RE 连接的架构,以及 (iv) 编辑单核苷酸变体
由细胞模型中的模型识别,以表征它们对基因表达的影响。在一起,这些
目标将深入了解基因-RE连接的机制和架构,并生成工具
绘制任何细胞类型中基因-RE 连接的图谱,并揭示常见疾病的机制。
斯坦福大学是我独立实验室的理想环境,提供了所有的设施
拟议的研究和合作研究所需的丰富的跨学科环境。一起,
这些目标将开启我在调控基因组学和疾病领域的独立科学生涯
遗传学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JESSE M ENGREITZ其他文献
JESSE M ENGREITZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JESSE M ENGREITZ', 18)}}的其他基金
High-throughput cellular genetics to connect noncoding variants to coronary artery disease genes
高通量细胞遗传学将非编码变异与冠状动脉疾病基因连接起来
- 批准号:
10659996 - 财政年份:2023
- 资助金额:
$ 28.46万 - 项目类别:
MorPhiC: Constructing a Catalog of Cellular Programs to Identify and Annotate Human Disease Genes
MorPhiC:构建细胞程序目录来识别和注释人类疾病基因
- 批准号:
10733164 - 财政年份:2023
- 资助金额:
$ 28.46万 - 项目类别:
Mapping, modeling, and manipulating 3D contacts in vascular cells to connect risk variants to disease genes
绘制、建模和操作血管细胞中的 3D 接触,将风险变异与疾病基因联系起来
- 批准号:
10446856 - 财政年份:2022
- 资助金额:
$ 28.46万 - 项目类别:
Mapping, modeling, and manipulating 3D contacts in vascular cells to connect risk variants to disease genes
绘制、建模和操作血管细胞中的 3D 接触,将风险变异与疾病基因联系起来
- 批准号:
10591585 - 财政年份:2022
- 资助金额:
$ 28.46万 - 项目类别:
Systematic mapping and prediction of gene-enhancer connections
基因增强子连接的系统绘图和预测
- 批准号:
10318508 - 财政年份:2021
- 资助金额:
$ 28.46万 - 项目类别:
Stanford Center for Connecting DNA Variants to Function and Phenotype
斯坦福大学 DNA 变异与功能和表型关联中心
- 批准号:
10633286 - 财政年份:2021
- 资助金额:
$ 28.46万 - 项目类别:
Stanford Center for Connecting DNA Variants to Function and Phenotype
斯坦福大学 DNA 变异与功能和表型关联中心
- 批准号:
10480918 - 财政年份:2021
- 资助金额:
$ 28.46万 - 项目类别:
Stanford Center for Connecting DNA Variants to Function and Phenotype
斯坦福大学 DNA 变异与功能和表型关联中心
- 批准号:
10295739 - 财政年份:2021
- 资助金额:
$ 28.46万 - 项目类别:
Mapping enhancer-gene regulation in single cells to connect genetic variants to target genes and cell types
绘制单细胞中的增强子基因调控图谱,将遗传变异与目标基因和细胞类型联系起来
- 批准号:
10434907 - 财政年份:2020
- 资助金额:
$ 28.46万 - 项目类别:
Systematic mapping and prediction of gene-enhancer connections
基因增强子连接的系统绘图和预测
- 批准号:
10365988 - 财政年份:2020
- 资助金额:
$ 28.46万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 28.46万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 28.46万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 28.46万 - 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
- 批准号:
10679749 - 财政年份:2023
- 资助金额:
$ 28.46万 - 项目类别: