An engineered platform for the study of metastasis (PQ #24)
用于研究转移的工程平台(PQ
基本信息
- 批准号:8677827
- 负责人:
- 金额:$ 32.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAluminumAnimal ModelBiologic CharacteristicBiologicalBiologyBlood VesselsCaliberCardiovascular systemCellsCessation of lifeChemicalsClinicalCytoskeletonDataDevelopmentDiseaseDistantEndothelial CellsEngineeringEventExtracellular MatrixExtravasationFoundationsGeometryGoalsGrowth FactorImageLaboratoriesMalignant NeoplasmsMicrofluidicsModelingMoldsNeoplasm MetastasisOne-Step dentin bonding systemOnline SystemsOutcomePerfusionPhysicsPrimary NeoplasmProcessPropertyProtocols documentationResearchSignaling MoleculeSiteSolutionsStructureTimeTissue EngineeringTissue GraftsTissuesTranslatingTranslationsTumor BiologyVascular Endothelial CellVascular SystemViscosityangiogenesisanticancer researchcancer cellcancer imagingcell typechemical propertydesigninsightmeetingsmetastatic processmigrationmortalitynovel strategiespreventresearch studystemsuccesstumor
项目摘要
DESCRIPTION (provided by applicant): This application addresses PQ #24: Given the difficulty of studying metastasis, can we develop new approaches, such as engineered tissue grafts, to investigate the biology of tumor spread? Many of the steps in the metastatic process, specifically invasion, intravasation, and extravasation, take place at or near the interface between the local tissue microenvironment and the vascular system. Therefore the development of a platform that combines both extracellular matrix and a vessel is key to unraveling the events that guide the development of metastasis. The major challenge in developing such a platform is the complexity of this interface. To address this challenge we propose a microfluidic platform that incorporates both artificial extra cellular matrix and a vessel. Our objective is to produce a platform that: (1) recapitulates the relevant physical and biological characteristics of the interface between extracellular matrix and a vessel in a physiologically relevant geometry, (2) allows control over physicochemical and biological properties such that experiments can be performed systematically and reproducibly, and allowing variables to be adjusted independently, and (3) is sufficiently robust that fabrication can be readily translated to other laboratories. In
preliminary data we have demonstrated fabrication of a functional platform and the feasibility of using the platform to study metastasis. In this research, we propose to lay the foundations for the refinement and further development of the platform to enable advances in the understanding of metastasis. The artificial extra cellular matrix/vessel platform allows study of invasion, intravasation and extravasation in a physiologically relevant geometry. To study invasion and intravasation a cavity is created in the extra cellular matrix near the artificial vessel. Prolifertion, detachment, and migration of cancer cells to the vessel, followed by intravasation into the vessel, can be imaged in real time. To study extravasation, cancer cells are added to the perfusion media flowing through the vessel. Depending on the vessel size, arrest can occur by adhesion or occlusion. In preliminary data, we have performed a proof-of-principle demonstration of the formation of a perfused artificial vessel using vascular endothelial cells and
the incorporation of a tumor for the study of invasion and intravasation. The overall goal of this project is to develop an engineered ECM/vessel platform for the systematic study of key steps in the metastatic cascade. Building on these results we will optimize the engineered ECM/vessel platform (Aim 1), study the dynamics of invasion and intravasation (Aim 2a) and extravasation (Aim 2b), and develop modules for the translation of the engineered ECM/vessel platform for the study of metastasis (Aim 3).
描述(由申请人提供):本申请解决了 PQ #24:考虑到研究转移的困难,我们是否可以开发新方法(例如工程组织移植物)来研究肿瘤扩散的生物学?转移过程中的许多步骤,特别是侵袭、内渗和外渗,发生在局部组织微环境和血管系统之间的界面处或附近。因此,开发结合细胞外基质和血管的平台是揭示引导转移发展的事件的关键。开发这样一个平台的主要挑战是该接口的复杂性。为了应对这一挑战,我们提出了一种微流体平台,其中包含人工细胞外基质和容器。我们的目标是建立一个平台,该平台:(1)以生理学相关的几何形状概括细胞外基质和血管之间界面的相关物理和生物特征,(2)允许控制物理化学和生物特性,以便可以进行实验系统性和可重复性,并允许独立调整变量,并且(3)足够稳健,可以轻松地将制造转移到其他实验室。在
初步数据我们已经证明了功能平台的制造以及使用该平台研究转移的可行性。在这项研究中,我们建议为该平台的完善和进一步发展奠定基础,以促进对转移的理解。人工细胞外基质/血管平台允许以生理相关的几何形状研究侵袭、内渗和外渗。为了研究侵袭和内渗,在人造血管附近的细胞外基质中创建一个空腔。癌细胞的增殖、脱离和迁移到血管,然后渗入血管,可以实时成像。为了研究外渗,将癌细胞添加到流经血管的灌注介质中。根据血管大小,可能会因粘连或闭塞而发生停滞。在初步数据中,我们对使用血管内皮细胞和
纳入肿瘤以研究侵袭和内渗。该项目的总体目标是开发一个工程 ECM/血管平台,用于系统研究转移级联中的关键步骤。基于这些结果,我们将优化工程 ECM/血管平台(目标 1),研究侵入和内渗(目标 2a)和外渗(目标 2b)的动力学,并开发用于翻译工程 ECM/血管平台的模块转移研究(目标 3)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter C Searson其他文献
Peter C Searson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter C Searson', 18)}}的其他基金
Elucidating the role of pericytes in angiogenesis in the brain using a tissue-engineered microvessel model
使用组织工程微血管模型阐明周细胞在大脑血管生成中的作用
- 批准号:
10648177 - 财政年份:2023
- 资助金额:
$ 32.15万 - 项目类别:
Mechanisms of cerebrovascular barrier dysfunction caused by APP and PSEN1 mutations and amyloid beta exposure
APP和PSEN1突变及β淀粉样蛋白暴露引起脑血管屏障功能障碍的机制
- 批准号:
10401690 - 财政年份:2021
- 资助金额:
$ 32.15万 - 项目类别:
Functional 3D tissue-engineering models of the cerebrovasculature incorporating stem cell-derived brain microvascular endothelial cells, pericytes, and astrocytes
脑血管系统的功能性 3D 组织工程模型,包含干细胞来源的脑微血管内皮细胞、周细胞和星形胶质细胞
- 批准号:
10546464 - 财政年份:2019
- 资助金额:
$ 32.15万 - 项目类别:
Functional 3D tissue-engineering models of the cerebrovasculature incorporating stem cell-derived brain microvascular endothelial cells, pericytes, and astrocytes
脑血管系统的功能性 3D 组织工程模型,包含干细胞来源的脑微血管内皮细胞、周细胞和星形胶质细胞
- 批准号:
9902557 - 财政年份:2019
- 资助金额:
$ 32.15万 - 项目类别:
Functional 3D tissue-engineering models of the cerebrovasculature incorporating stem cell-derived brain microvascular endothelial cells, pericytes, and astrocytes
脑血管系统的功能性 3D 组织工程模型,包含干细胞来源的脑微血管内皮细胞、周细胞和星形胶质细胞
- 批准号:
10328888 - 财政年份:2019
- 资助金额:
$ 32.15万 - 项目类别:
An engineered platform for the study of metastasis (PQ #24)
用于研究转移的工程平台(PQ
- 批准号:
8513951 - 财政年份:2012
- 资助金额:
$ 32.15万 - 项目类别:
An engineered platform for the study of metastasis (PQ #24)
用于研究转移的工程平台(PQ
- 批准号:
8852093 - 财政年份:2012
- 资助金额:
$ 32.15万 - 项目类别:
相似国自然基金
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
组胺通过调控Th1/Th2平衡促进宫腔粘连的机制研究
- 批准号:82360298
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
宫腔粘连子宫内膜NK细胞异常破坏间质稳态致内膜纤维化的机制研究
- 批准号:82371641
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
An engineered platform for the study of metastasis (PQ #24)
用于研究转移的工程平台(PQ
- 批准号:
8513951 - 财政年份:2012
- 资助金额:
$ 32.15万 - 项目类别:
An engineered platform for the study of metastasis (PQ #24)
用于研究转移的工程平台(PQ
- 批准号:
8852093 - 财政年份:2012
- 资助金额:
$ 32.15万 - 项目类别:
Nano-Crystalline Ceramic Coatings for the Reduction of Sliding Resistance of Orth
降低滑动阻力的纳米晶陶瓷涂层
- 批准号:
8729439 - 财政年份:2011
- 资助金额:
$ 32.15万 - 项目类别:
Nanoporous Gold: Extractive Substrate for High-Speed Ultrasensitive Bioassays
纳米多孔金:用于高速超灵敏生物测定的提取底物
- 批准号:
7764726 - 财政年份:2009
- 资助金额:
$ 32.15万 - 项目类别:
A Microfluidic Device for Label-free HIV Virion Count at Point of Care Settings
用于护理点无标记 HIV 病毒粒子计数的微流体装置
- 批准号:
7860292 - 财政年份:2009
- 资助金额:
$ 32.15万 - 项目类别: