Non-destructive optical spectroscopic assay for high-throughput metabolic characterization of in vitro cell models and patient-derived organoids
用于体外细胞模型和患者来源类器官高通量代谢表征的无损光学光谱测定
基本信息
- 批准号:10666355
- 负责人:
- 金额:$ 18.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:4T1AlgorithmsBiological AssayBiological MarkersBiomedical ResearchBreast Cancer ModelBreast Cancer PatientCancer ModelCancer PatientCell LineCell modelCellsClinicClinicalControl GroupsConvulsionsDecision MakingEvaluationFatty AcidsFiberFluorescenceFutureGenus HippocampusGoalsIn VitroIncubatedLightMachine LearningMatrix MetalloproteinasesMeasurementMeasuresMembrane PotentialsMetabolicMetabolismModelingNatureOpticsOrganoidsOutcomePatientsPerformancePreparationRadiationRadiation ToleranceRadiation therapyReaderRegimenRoleSamplingSiblingsSourceSpecimenSpectrum AnalysisStandardizationStressSurvival RateSystemTechniquesTechnologyTestingTherapeuticTherapeutic StudiesTimeTissuesUpdateWorkanticancer researchcancer cellcancer radiation therapycancer therapyexperienceexperimental groupfluorophoreglucose uptakehigh throughput screeningimprovedin vivoindexinginnovationmachine learning algorithmmalignant breast neoplasmmetabolomicsmitochondrial membranenew technologynovelnovel strategiespilot testpre-clinicalpreclinical studypredictive modelingprogramsradiation responseradioresistanttooltumortumor growthtumor metabolismuptake
项目摘要
Abstract
To maximize cancer patients’ survival rate post-therapy, in vitro immortal cancer cell models and newly
developed patient-derived organoids are widely used to study the role of tumor metabolism reprogramming in
tumor growth and survival under therapeutics stresses. Although conducting longitudinal metabolic
measurements on the same tumor sample during a course of therapy is critical for therapeutic studies, there
are surprisingly few techniques that can provide a systems-level view of tumor metabolism on in vitro cancer
models or organoids non-destructively. Several metabolic tools, such as Seahorse Assay and Metabolomics,
provide standardized metabolic measurements but often require destructive sample preparation. Relying on
the non-invasive nature of optical technique, this proposal seeks to fill the critical technical gap by developing
an optical spectroscopic assay that will enable non-destructive high-throughput metabolism measurement on in
vitro cancer models and organoids for cancer research. Specifically, we will develop a novel multi-channel
fluorescence spectroscopic assay and a machine learning de-convolution algorithm to quantify the key
metabolic parameters of in vitro cancer models (Aim 1). As there is a significant unmet clinical need for breast
cancer (BC) radiotherapy (RT) sensitivity evaluation prior to treatment, we will demonstrate our non-destructive
assay for early prediction of BC radiation responses within the decision-making window via longitudinal
metabolic characterization of patient-derived organoids under radiation stresses (Aim 2). Our technology fills
an important gap that exists between Seahorse Assay (in vitro cells) and Metabolomics (in vitro cells and ex
vivo tissue) by providing a novel approach for non-destructive metabolism measurement on in vitro cancer
models and patient-derived organoids. Our innovative RT sensitivity prediction model will directly impact BC
patients by providing a novel paradigm for patients’ RT sensitivity prediction during the decision-making
window. Once we demonstrate the proof-of-concept of our optical technique and the RT sensitivity prediction
model, we will move our study to a large-scale trail in clinics with a goal of providing individualized RT for BC
patients in our future R01 plan.
抽象的
为了最大化癌症患者的生存率,疗法后,体外不朽的癌细胞模型和新的
发达的患者衍生的类器官被广泛用于研究肿瘤代谢在重编程中的作用
治疗应力下的肿瘤生长和生存。虽然进行纵向代谢
在治疗过程中,对同一肿瘤样本的测量对于治疗研究至关重要
令人惊讶的是,很少有能够在体外癌症上提供肿瘤代谢的系统级别的视图
模型或类器官非破坏性。几种代谢工具,例如海马测定法和代谢组学,
提供标准化的代谢测量值,但通常需要破坏性样品制备。依靠
光学技术的非侵入性质,该提案旨在通过发展来填补关键的技术差距
光谱法测定将实现非破坏性高通量代谢测量
癌症研究的体外癌症模型和类器官。具体来说,我们将开发一种新颖的多通道
荧光光谱测定和机器学习De-Conconvolution算法,以量化密钥
体外癌症模型的代谢参数(AIM 1)。由于乳房有很大的未满足临床需求
癌症(BC)放疗(RT)敏感性评估在治疗前,我们将证明我们的无损
通过纵向进行决策窗口内BC辐射响应的早期预测的测定
在辐射应力下对患者衍生的类器官的代谢表征(AIM 2)。我们的技术填充
海马测定(体外细胞)和代谢组学(体外细胞和EX)之间存在的一个重要差距
体内组织)通过为体外癌症的非破坏性代谢测量提供新的方法
模型和患者衍生的类器官。我们创新的RT灵敏度预测模型将直接影响BC
通过在决策过程中为患者的RT灵敏度预测提供新的范式来提供新的范式
窗户。一旦我们证明了光学技术的概念和RT灵敏度预测
模型,我们将研究将我们的研究转移到诊所的一条大型步道,目的是为BC提供个性化的RT
我们将来的R01计划中的患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caigang Zhu其他文献
Caigang Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caigang Zhu', 18)}}的其他基金
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 18.74万 - 项目类别:
Non-destructive optical spectroscopic assay for high-throughput metabolic characterization of in vitro cell models and patient-derived organoids
用于体外细胞模型和患者来源类器官高通量代谢表征的无损光学光谱测定
- 批准号:
10348268 - 财政年份:2022
- 资助金额:
$ 18.74万 - 项目类别:
An intra-vital metabolic microscope to reveal the mechanisms of radiation resistance in head and neck carcinomas
活体代谢显微镜揭示头颈癌的抗辐射机制
- 批准号:
10573171 - 财政年份:2017
- 资助金额:
$ 18.74万 - 项目类别:
An intra-vital metabolic microscope to reveal the mechanisms of radiation resistance in head and neck carcinomas
活体代谢显微镜揭示头颈癌的抗辐射机制
- 批准号:
10271869 - 财政年份:2017
- 资助金额:
$ 18.74万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
- 批准号:
10714930 - 财政年份:2023
- 资助金额:
$ 18.74万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 18.74万 - 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 18.74万 - 项目类别:
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
- 批准号:
10601679 - 财政年份:2023
- 资助金额:
$ 18.74万 - 项目类别: