Non-destructive optical spectroscopic assay for high-throughput metabolic characterization of in vitro cell models and patient-derived organoids
用于体外细胞模型和患者来源类器官高通量代谢表征的无损光学光谱测定
基本信息
- 批准号:10348268
- 负责人:
- 金额:$ 22.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:4T1AlgorithmsBiological AssayBiological MarkersBiomedical ResearchBreast Cancer ModelBreast Cancer PatientCancer ModelCancer PatientCell LineCell modelCellsClinicClinicalControl GroupsConvulsionsDecision MakingEvaluationFatty AcidsFiberFluorescenceFutureGenus HippocampusGoalsIn VitroLightMachine LearningMatrix MetalloproteinasesMeasurementMeasuresMembrane PotentialsMetabolicMetabolismModelingNatureOpticsOrganoidsOutcomePatientsPerformancePreparationRadiationRadiation ToleranceRadiation therapyReaderRegimenRoleSamplingSiblingsSourceSpecimenSpectrum AnalysisStandardizationStressSurvival RateSystemTechniquesTechnologyTestingTherapeuticTherapeutic StudiesTimeTissuesUpdateWorkanticancer researchbasecancer cellcancer radiation therapycancer therapyexperienceexperimental groupfluorophoreglucose uptakehigh throughput screeningimprovedin vivoindexinginnovationmachine learning algorithmmalignant breast neoplasmmetabolomicsmitochondrial membranenew technologynovelnovel strategiespilot testpre-clinicalpreclinical studypredictive modelingprogramsradiation responseradioresistanttooltumortumor growthtumor metabolismuptake
项目摘要
Abstract
To maximize cancer patients’ survival rate post-therapy, in vitro immortal cancer cell models and newly
developed patient-derived organoids are widely used to study the role of tumor metabolism reprogramming in
tumor growth and survival under therapeutics stresses. Although conducting longitudinal metabolic
measurements on the same tumor sample during a course of therapy is critical for therapeutic studies, there
are surprisingly few techniques that can provide a systems-level view of tumor metabolism on in vitro cancer
models or organoids non-destructively. Several metabolic tools, such as Seahorse Assay and Metabolomics,
provide standardized metabolic measurements but often require destructive sample preparation. Relying on
the non-invasive nature of optical technique, this proposal seeks to fill the critical technical gap by developing
an optical spectroscopic assay that will enable non-destructive high-throughput metabolism measurement on in
vitro cancer models and organoids for cancer research. Specifically, we will develop a novel multi-channel
fluorescence spectroscopic assay and a machine learning de-convolution algorithm to quantify the key
metabolic parameters of in vitro cancer models (Aim 1). As there is a significant unmet clinical need for breast
cancer (BC) radiotherapy (RT) sensitivity evaluation prior to treatment, we will demonstrate our non-destructive
assay for early prediction of BC radiation responses within the decision-making window via longitudinal
metabolic characterization of patient-derived organoids under radiation stresses (Aim 2). Our technology fills
an important gap that exists between Seahorse Assay (in vitro cells) and Metabolomics (in vitro cells and ex
vivo tissue) by providing a novel approach for non-destructive metabolism measurement on in vitro cancer
models and patient-derived organoids. Our innovative RT sensitivity prediction model will directly impact BC
patients by providing a novel paradigm for patients’ RT sensitivity prediction during the decision-making
window. Once we demonstrate the proof-of-concept of our optical technique and the RT sensitivity prediction
model, we will move our study to a large-scale trail in clinics with a goal of providing individualized RT for BC
patients in our future R01 plan.
抽象的
为了最大限度地提高癌症患者的治疗后存活率,体外永生癌细胞模型和新
开发的源自患者的类器官被广泛用于研究肿瘤代谢重编程在
尽管进行纵向代谢,但肿瘤在治疗应激下生长和存活。
在治疗过程中对同一肿瘤样本进行测量对于治疗研究至关重要,
令人惊讶的是,很少有技术可以提供体外癌症肿瘤代谢的系统水平视图
多种代谢工具,例如海马测定和代谢组学,
提供标准化的代谢测量,但通常需要依赖于破坏性的样品制备。
鉴于光学技术的非侵入性本质,该提案旨在通过开发来填补关键的技术空白
一种光学光谱测定法,可实现非破坏性高通量代谢测量
具体来说,我们将开发一种新型的多通道体外癌症模型和类器官。
荧光光谱测定和机器学习反卷积算法来量化关键
体外癌症模型的代谢参数(目标 1),因为乳腺的临床需求尚未得到满足。
癌症(BC)放疗(RT)治疗前敏感性评估,我们将展示我们的无损
通过纵向分析在决策窗口内早期预测 BC 辐射反应
辐射应激下患者来源的类器官的代谢特征(目标 2)。
海马测定(体外细胞)和代谢组学(体外细胞和体外细胞)之间存在重要差距
体内组织),为体外癌症的非破坏性代谢测量提供了一种新方法
我们创新的 RT 敏感性预测模型将直接影响 BC。
通过在决策过程中为患者的 RT 敏感性预测提供新的范式
一旦我们展示了我们的光学技术和 RT 灵敏度预测的概念验证。
模型,我们将把我们的研究转移到临床的大规模试验,目标是为 BC 提供个性化的 RT
我们未来的 R01 计划中的患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caigang Zhu其他文献
Caigang Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caigang Zhu', 18)}}的其他基金
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Non-destructive optical spectroscopic assay for high-throughput metabolic characterization of in vitro cell models and patient-derived organoids
用于体外细胞模型和患者来源类器官高通量代谢表征的无损光学光谱测定
- 批准号:
10666355 - 财政年份:2022
- 资助金额:
$ 22.58万 - 项目类别:
An intra-vital metabolic microscope to reveal the mechanisms of radiation resistance in head and neck carcinomas
活体代谢显微镜揭示头颈癌的抗辐射机制
- 批准号:
10573171 - 财政年份:2017
- 资助金额:
$ 22.58万 - 项目类别:
An intra-vital metabolic microscope to reveal the mechanisms of radiation resistance in head and neck carcinomas
活体代谢显微镜揭示头颈癌的抗辐射机制
- 批准号:
10271869 - 财政年份:2017
- 资助金额:
$ 22.58万 - 项目类别:
相似国自然基金
基于大数据的社交网络用户异常检测生物智能算法与系统研究
- 批准号:61762018
- 批准年份:2017
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
基于蚁群算法的数字微流控生物芯片在线测试研究
- 批准号:61671164
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
面向新一代测序的癌症拷贝数异常检测及其关键变异的计算发现研究
- 批准号:61571414
- 批准年份:2015
- 资助金额:60.0 万元
- 项目类别:面上项目
生物视觉和认知心理学启发的目标检测算法研究
- 批准号:61403412
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于生物免疫学中危险理论的入侵检测研究
- 批准号:61240023
- 批准年份:2012
- 资助金额:18.0 万元
- 项目类别:专项基金项目
相似海外基金
Investigating the Protective Efficacy of SIV/HIV T and B cell Immunity Induced by RNA Replicons
研究 RNA 复制子诱导的 SIV/HIV T 和 B 细胞免疫的保护功效
- 批准号:
10673223 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
- 批准号:
10825737 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Activity-based regulome profiling for the discovery of covalent transcription factor inhibitors
基于活性的调节组分析用于发现共价转录因子抑制剂
- 批准号:
10603503 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别:
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
- 批准号:
10714930 - 财政年份:2023
- 资助金额:
$ 22.58万 - 项目类别: