Automated Contact Tracing System for Rapid High-Accuracy Assessment to Management Dementia Patients and Staff Exposed to Infectious Diseases in Long Term Care Facilities
自动接触者追踪系统,用于对长期护理机构中暴露于传染病的痴呆症患者和工作人员进行快速高精度评估
基本信息
- 批准号:10671765
- 负责人:
- 金额:$ 129.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAddressAdministratorAffectAgeAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAmericanBackBehaviorCOVID-19COVID-19 pandemicCar PhoneCaregiversCaringCellular PhoneCommunicable DiseasesCommunitiesComplexComputer softwareContact TracingDataData Storage and RetrievalDementiaDevicesDiagnosisDiseaseDisease ManagementDisease OutbreaksElderlyElectronicsEngineeringEnvironmentEpidemiologyEvaluationEventExhibitsExposure toFloridaFocus GroupsHealthHealth care facilityHumanHuman ResourcesIndividualInfection ControlInfrastructureIntelligenceInterviewInvestmentsLaboratoriesLeadLifeLightLocationLogisticsLong-Term CareManualsMeasuresMethodsModificationMotionMovementNursing HomesOutcomePatientsPerformancePersonsPhasePopulationPredispositionPreventionProcessProductionRecording of previous eventsReportingResearchResearch PersonnelResearch TrainingResourcesRetrievalRiskRisk AssessmentRouteSafetySecureSeriesShoesSmall Business Innovation Research GrantSpecific qualifier valueSymptomsSystemTechnologyTestingTimeTracerTrainingUnited StatesUniversitiesVirusWorkaging in placebasecommunity livingcommunity settingcomparativecontagioncostdata accessdata communicationdata managementdesigndistrustefficacy evaluationefficacy studyexperienceexperimental studyfunctional independencehealth care settingshealthcare-associated infectionshigh riskhuman studymemory careoperationpatient home carephase 1 testingprivacy protectionprogramsprototyperesponsesensorsuccesssystem architecturetoolvulnerable communitywearable deviceweb appweb platform
项目摘要
Project Abstract
In this Fast-Track SBIR project, ASTER Labs will address an urgent, immediate, need for accessible and
accurate contact tracing to aid management of infectious disease outbreaks in long-term care facilities of
patients with Alzheimer’s disease and related dementias. An estimated 5.8 million Americans in 2020 live with
Alzheimer’s dementia and nearly half of nursing home and other long-term care residents have been
diagnosed with a form of dementia. Challenges in infectious disease management in these care settings are
increased by frequent interactions between patients, caregivers, staff, and visitors, as well as higher risk from
contagion due to age and underlying health conditions. The COVID-19 pandemic has only exacerbated the
issue due to the susceptibility of the elderly to the virus. Contact tracing to identify, test, and isolate those who
may have been exposed to an infected person has traditionally been a manual, labor-intensive process. Many
care facilities lack the financial, human, and logistical resources to track sufficient detail to retrace movements.
For dementia patients in particular, limited recall of recent events and interactions, inability to respond to
tracing questions, and potential distrust of tracers risk inaccurate data. Investment in human resources to
perform contact tracing is costly, and ad hoc tracing can limit effective outcomes. Existing methods to
automate contact tracing have largely been smartphone software applications, widely criticized for lack of
privacy protection, and in long-term care settings, guarantees on mobile phone use are limited. The few
available solutions for care facilities rely on non-discreet wearable devices that, due to unfamiliarity, may be
unacceptable to dementia patients, and often require large infrastructure additions with limitations on range.
Therefore, there exists a significant unmet need to support care facilities by providing an unobtrusive, on-
demand, accurate, and automated contact tracing solution that works both indoors and outdoors with little to no
infrastructure requirements, and that addresses the special needs of dementia patients. ASTER Labs’
proposed Activtrace system leverages intelligent processing of WiFi, GPS, cellular, and inertial sensor data
from a small hardware suite concealed in a shoe insole, unnoticeable to the wearer, that achieves high-
precision location and duration of close-contact encounters in complex indoor and outdoor environments. In
Phase I, the prototype system will be assembled, and feasibility will be demonstrated by determining the
positional and temporal accuracy of the device in timed motion experiments, and through a focus group study
with contact tracers and caregivers in senior care settings. Phase I testing will provide the success criteria for
the start of the Phase II program. In Phase II, the pre-production insoles and comprehensive software
application will be assembled, and the integrated system evaluated in a study with research actors wearing the
insoles, along with confederate targets. Comparisons of results done manually by trained contact tracers and
the automated Activtrace solution in multiple planned scenarios will establish the system’s efficacy.
项目摘要
在这个快速轨道 SBIR 项目中,ASTER Labs 将解决可访问且即时的紧急需求
准确的接触者追踪有助于管理长期护理机构中的传染病爆发
预计到 2020 年,将有 580 万美国人患有阿尔茨海默病和相关痴呆症。
阿尔茨海默氏症和近一半的疗养院和其他长期护理居民都患有阿尔茨海默氏症
被诊断患有某种形式的痴呆症的患者在这些护理机构中的传染病管理面临着挑战。
由于患者、护理人员、工作人员和访客之间的频繁互动以及来自患者的更高风险而增加
由于年龄和潜在的健康状况而导致的传染只会使情况更加恶化。
由于老年人对病毒易感性,因此需要进行接触者追踪,以识别、测试和隔离那些人。
传统上,与感染者接触可能是一个手动、劳动密集型的过程。
护理机构缺乏财力、人力和后勤资源来追踪足够的细节来追踪活动。
特别是对于痴呆症患者来说,对最近发生的事件和互动的回忆有限,无法对
追踪问题以及对追踪者的潜在不信任可能会导致数据不准确。
进行接触者追踪的成本很高,而且临时追踪可能会限制现有方法的有效结果。
自动接触者追踪主要是智能手机软件应用程序,因缺乏
隐私保护,并且在长期护理环境中,对手机使用的保证是有限的。
护理机构的可用解决方案依赖于非谨慎的可穿戴设备,由于不熟悉,这些设备可能会
这对痴呆症患者来说是不可接受的,并且通常需要增加大量基础设施,且范围有限。
因此,通过提供不引人注目的、现场的服务来支持护理机构,存在着巨大的未满足的需求。
按需、准确、自动化的接触者追踪解决方案,可在室内和室外使用,几乎不需要任何操作
基础设施要求,并满足 ASTER 实验室的特殊需求。
拟议的 Activtrace 系统利用 WiFi、GPS、蜂窝和惯性传感器数据的智能处理
来自隐藏在鞋垫中的小型硬件套件,穿着者不会注意到,从而实现了高
复杂室内外环境下近距离接触的精确定位和持续时间。
第一阶段,将组装原型系统,并通过确定
通过焦点小组研究,定时运动实验中设备的位置和时间精度
与高级护理机构中的接触者追踪者和护理人员一起进行第一阶段测试将提供成功标准。
第二阶段计划开始 在第二阶段,预生产鞋垫和综合软件。
应用程序将被组装,并在研究参与者佩戴的研究中评估集成系统
鞋垫,以及由受过训练的接触追踪者手动完成的结果的比较。
多个计划场景中的自动化 Activtrace 解决方案将确定系统的功效。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suneel Ismail Sheikh其他文献
Suneel Ismail Sheikh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suneel Ismail Sheikh', 18)}}的其他基金
Automated System for Accurate Determination of Activities of Daily Living for Independently-Living Persons with Alzheimers Disease and Related Dementias
用于准确确定患有阿尔茨海默病和相关痴呆症的独立生活者的日常生活活动的自动化系统
- 批准号:
10543933 - 财政年份:2022
- 资助金额:
$ 129.15万 - 项目类别:
Automated Contact Tracing System for Rapid High-Accuracy Assessment to Management Dementia Patients and Staff Exposed to Infectious Diseases in Long Term Care Facilities
自动接触者追踪系统,用于对长期护理机构中暴露于传染病的痴呆症患者和工作人员进行快速高精度评估
- 批准号:
10254018 - 财政年份:2021
- 资助金额:
$ 129.15万 - 项目类别:
PHS 2018-02 Omnibus Solicitation of the NIH, CDC, and FDA for Small Business Innovation Research Gra
PHS 2018-02 NIH、CDC 和 FDA 小型企业创新研究综合征集
- 批准号:
9907955 - 财政年份:2019
- 资助金额:
$ 129.15万 - 项目类别:
Miniature Passive Device for Locating Lost Dentures in Care Facilities
用于在护理机构中定位丢失假牙的微型被动装置
- 批准号:
10017949 - 财政年份:2016
- 资助金额:
$ 129.15万 - 项目类别:
Miniature Passive Device for Locating Lost Dentures in Care Facilities
用于在护理机构中定位丢失假牙的微型被动装置
- 批准号:
9199376 - 财政年份:2016
- 资助金额:
$ 129.15万 - 项目类别:
Precise Automatic Nail Trimmer to Aid Foot Care of the Elderly
精准自动指甲剪助力老人足部护理
- 批准号:
8978361 - 财政年份:2015
- 资助金额:
$ 129.15万 - 项目类别:
Accurate WiFi-Based Localization of Dementia Patients For Caregiver Support
基于 WiFi 的痴呆症患者准确定位,为护理人员提供支持
- 批准号:
9408729 - 财政年份:2014
- 资助金额:
$ 129.15万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Delivering Evidence-Based Parenting Services to Families in Child Welfare Using Telehealth
利用远程医疗为儿童福利家庭提供循证育儿服务
- 批准号:
10633017 - 财政年份:2023
- 资助金额:
$ 129.15万 - 项目类别:
Vivarium Modernization with Digital Ventilated Cages to Enhance Research Capacity and Reproducibility, and Provide Cage Environment Monitoring for Improved Operational Efficiency and Animal Welfare
采用数字通风笼进行现代化改造,以提高研究能力和再现性,并提供笼环境监测,以提高运营效率和动物福利
- 批准号:
10533591 - 财政年份:2022
- 资助金额:
$ 129.15万 - 项目类别:
SARS-CoV-2 in Correctional Populations: A collaborative, ethical approach to application of wastewater-based surveillance
惩教人群中的 SARS-CoV-2:应用基于废水的监测的协作、道德方法
- 批准号:
10447465 - 财政年份:2022
- 资助金额:
$ 129.15万 - 项目类别:
Optimizing Veteran Recovery from Sepsis (OVeR-Sepsis)
优化脓毒症退伍军人康复 (OVeR-脓毒症)
- 批准号:
10311252 - 财政年份:2021
- 资助金额:
$ 129.15万 - 项目类别:
Wastewater Analysis of SARS CoV-2 in Tribal Communities
部落社区 SARS CoV-2 废水分析
- 批准号:
10320996 - 财政年份:2021
- 资助金额:
$ 129.15万 - 项目类别: