SmartAD for Intelligent Alzheimer’s Disease(AD) Personalized Combination Therapy
SmartAD 智能阿尔茨海默病 (AD) 个性化联合治疗
基本信息
- 批准号:10670481
- 负责人:
- 金额:$ 39.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease patientAlzheimer&aposs disease therapyAntihypertensive AgentsArtificial IntelligenceBayesian ModelingBayesian NetworkBig DataBiological AssayBiological ModelsCardiovascular DiseasesCaregiversCharacteristicsClinicClinicalClinical DataClinical Decision Support SystemsClinical TrialsCognitiveCombination Drug TherapyCombination MedicationCombined Modality TherapyComplexCox Proportional Hazards ModelsDataData AnalysesData AnalyticsData CollectionData SetDecision TheoryDementiaDiabetes MellitusDiseaseDisease PathwayDisease ProgressionDrug CombinationsDrug TargetingEvaluationFailureGoalsHealthcareHeterogeneityHypertensionImpaired cognitionIn VitroIndividualInstitutional Review BoardsIntelligenceInternational Classification of Disease CodesMachine LearningMedicalMedical HistoryMemory LossMental DepressionMethodologyMethodsMobile Health ApplicationModelingMolecularMonitorNeurodegenerative DisordersOutcomePathologicPathway interactionsPatient-Focused OutcomesPatientsPharmaceutical PreparationsPharmacologyPharmacology StudyProtocols documentationReportingResearchRiskRunningScientistSymptomsSystemTechnologyTestingTherapeutic EffectTimeTrainingUniversitiesUpdateValidationbasecausal modelclinical decision supportclinical decision-makingcognitive benefitscognitive functioncohortcomorbiditydata miningdesigndisease prognosisdriving forcedrug actionencryptiongenetic signaturein vitro Bioassayindividual patientindividualized medicineinduced pluripotent stem cellinter-individual variationknowledgebasemental statemobile applicationmobile computingneuroimagingnext generationnovelnovel drug combinationnovel therapeuticspersonalized medicinepreventprogramsresearch clinical testingstatisticstreatment planning
项目摘要
Alzheimer’s Disease (AD) is a complex neurodegenerative disease that causes progressive memory loss and
cognitive impairment. While current treatments have shown some amelioration of symptoms, the effects have
been transient and limited to a small percentage of AD patients. Moreover, disease-modifying drugs based on
current understanding of disease mechanisms have all shown negative results in clinical trials. Part of the
failure is due to the heterogeneity in the disease mechanism, of which we do not yet have a clear
understanding. Increasing evidence has indicated that medical comorbidities share common disease pathways
with AD, and the medications used for these diseases can also alter the cognitive functions of AD patients.
However, limited studies have assessed combinations of these medications as treatments for AD with common
comorbidities. Thus, the goal of this proposal is to develop artificial intelligence (AI) analytics models and a
SmartAD app to facilitate cognitive function evaluation and personalized treatment plans for AD patients with
the most common comorbidities, such as cardiovascular diseases (CVD)/hypertension (HTN), diabetes
mellitus (DM), and depression (DPN). To achieve our goal, we will carry out retrospective analysis of
observational clinical data collected by the University of Pittsburgh Alzheimer’s Disease Research Center
(ADRC). First, we will statistically investigate the effects of different comorbidity medications when used in
combination with anti-AD medications on the trajectory of cognitive decline (Aim1). By identifying specific drug
combination(s) that have a synergistic effect against cognitive decline, we will then study the underlying
mechanisms using molecular systems pharmacology methods and validate the findings using in vitro iPSC and
other bioassays as needed (Aim2). Subsequently, we will build a clinical decision support system, SmartAD,
that will facilitate cognitive function evaluation and individualized treatment for AD patients with these common
comorbidities. We will build a Bayesian Network model that can predict patient-tailored disease progression
and treatment information provided by ADRC at the University of Pittsburgh (Aims 3 & 4). This model will be
intelligently machine-learned and trained on the ADRC dataset using causal machine-learning approaches.
Methodologies of decision theory will then be applied to search for a treatment combination that leads to the
optimal outcome for that patient. Finally, we will use external medical data from AD Neuroimaging Initiative
(ADNI) and National Alzheimer’s Coordinating Center (NACC) for model systems test validation (Aims 3 and
4). Taken all together, these studies will contribute to the discovery of novel drug combinations for AD patients
with comorbidities and develop SmartAD as an intelligent clinical decision support system that can facilitate
paperless cognitive function evaluation, progression prediction, as well as assist optimal personalized
medication for Alzheimer’s patients.
阿尔茨海默病 (AD) 是一种复杂的神经退行性疾病,会导致进行性记忆丧失和
虽然目前的治疗已显示出一定程度的症状改善,但效果却不佳。
而且,基于疾病缓解的药物是短暂的,并且仅限于一小部分 AD 患者。
目前对疾病机制的了解都在临床试验中显示出负面结果。
失败是由于疾病机制的异质性,我们还没有明确的认识
越来越多的证据表明,医学合并症具有共同的疾病途径。
AD 患者的认知功能也会发生改变,而治疗这些疾病的药物也会改变 AD 患者的认知功能。
然而,有限的研究评估了这些药物的组合作为治疗 AD 的常见方法。
因此,该提案的目标是开发人工智能(AI)分析模型和
SmartAD 应用程序可促进 AD 患者的认知功能评估和个性化治疗计划
最常见的合并症,如心血管疾病 (CVD)/高血压 (HTN)、糖尿病
为了实现我们的目标,我们将对糖尿病(DM)和抑郁症(DPN)进行回顾性分析。
匹兹堡大学阿尔茨海默病研究中心收集的观察性临床数据
(ADRC),我们将研究不同合并症药物在治疗中使用时的效果。
与抗 AD 药物联合治疗可降低认知能力(目标 1)。
组合对认知能力下降具有协同作用,然后我们将研究潜在的
使用分子系统药理学方法研究机制,并使用体外 iPSC 和验证结果
随后,我们将建立一个临床决策支持系统SmartAD,
这将有助于对患有这些常见症状的 AD 患者进行认知功能评估和个体化治疗
我们将建立一个贝叶斯网络模型,可以预测患者定制的疾病进展。
匹兹堡大学 ADRC 提供的治疗信息(目标 3 和 4)。
使用因果机器学习方法对 ADRC 数据集进行智能机器学习和训练。
然后将应用决策理论的方法来寻找导致以下结果的治疗组合:
最后,我们将使用 AD Neuroimaging Initiative 的外部医疗数据。
(ADNI) 和国家阿尔茨海默病协调中心 (NACC) 进行模型系统测试验证(目标 3 和
4) 总而言之,这些研究将有助于发现针对 AD 患者的新型药物组合。
并开发 SmartAD 作为智能临床决策支持系统,可以促进
无纸化认知功能评估、进展预测,以及协助优化个性化
阿尔茨海默病患者的药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiang-Qun Xie其他文献
Xiang-Qun Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiang-Qun Xie', 18)}}的其他基金
SmartAD for Intelligent Alzheimer’s Disease(AD) Personalized Combination Therapy
SmartAD 智能阿尔茨海默病 (AD) 个性化联合治疗
- 批准号:
10701069 - 财政年份:2022
- 资助金额:
$ 39.54万 - 项目类别:
Cannabinoid CB2 Receptor Structure and Allosteric Modulators
大麻素 CB2 受体结构和变构调节剂
- 批准号:
10297210 - 财政年份:2021
- 资助金额:
$ 39.54万 - 项目类别:
Cannabinoid CB2 Receptor Structure and Allosteric Modulators
大麻素 CB2 受体结构和变构调节剂
- 批准号:
10448397 - 财政年份:2021
- 资助金额:
$ 39.54万 - 项目类别:
Cannabinoid CB2 Receptor Structure and Allosteric Modulators
大麻素 CB2 受体结构和变构调节剂
- 批准号:
10612431 - 财政年份:2021
- 资助金额:
$ 39.54万 - 项目类别:
Screen and Design p18 Chemical Probes for Hematopoietic Stem Cell Self-Renewal
用于造血干细胞自我更新的 p18 化学探针的筛选和设计
- 批准号:
8174548 - 财政年份:2011
- 资助金额:
$ 39.54万 - 项目类别:
CHEMINFORMATICS DATA-MINING FOR MOLECULAR FINGERPRINT CALCULATION
用于分子指纹计算的化学信息学数据挖掘
- 批准号:
8364201 - 财政年份:2011
- 资助金额:
$ 39.54万 - 项目类别:
Screen and Design p18 Chemical Probes for Hematopoietic Stem Cell Self-Renewal
用于造血干细胞自我更新的 p18 化学探针的筛选和设计
- 批准号:
8284383 - 财政年份:2011
- 资助金额:
$ 39.54万 - 项目类别:
CHEMINFORMATICS DATA-MINING FOR MOLECULAR FINGERPRINT CALCULATION
用于分子指纹计算的化学信息学数据挖掘
- 批准号:
8171779 - 财政年份:2010
- 资助金额:
$ 39.54万 - 项目类别:
Structure/Function of the CB2 Receptor Binding and G-protein Recognition Pockets
CB2 受体结合和 G 蛋白识别袋的结构/功能
- 批准号:
8248180 - 财政年份:2010
- 资助金额:
$ 39.54万 - 项目类别:
Structure/Function of the CB2 Receptor Binding and G-protein Recognition Pockets
CB2 受体结合和 G 蛋白识别口袋的结构/功能
- 批准号:
8851758 - 财政年份:2010
- 资助金额:
$ 39.54万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
靶向干预CD33/Aβ相互作用改善小胶质细胞功能延缓AD病理进程
- 批准号:81901072
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 39.54万 - 项目类别:
A software tool to facilitate variable-level equivalency and harmonization in research data: Leveraging the NIH Common Data Elements Repository to link concepts and measures in an open format
促进研究数据中变量级别等效性和协调性的软件工具:利用 NIH 通用数据元素存储库以开放格式链接概念和测量
- 批准号:
10821517 - 财政年份:2023
- 资助金额:
$ 39.54万 - 项目类别:
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
- 批准号:
10603902 - 财政年份:2023
- 资助金额:
$ 39.54万 - 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 39.54万 - 项目类别:
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
- 批准号:
10816864 - 财政年份:2023
- 资助金额:
$ 39.54万 - 项目类别: