Computational Core
计算核心
基本信息
- 批准号:10633811
- 负责人:
- 金额:$ 34.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-03 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylcholineAffectAnatomic ModelsAnimal ModelAttentionBehaviorBehavioralBiologicalBiophysicsBrainCellsCognitionCognitiveCognitive deficitsComplexComputer ModelsCoupledCuesDataDecision MakingDetectionDimensionsEnvironmentEquationFrequenciesFunctional disorderFutureGlutamatesHodgkin-Huxley modelHumanImpaired cognitionLearningMedial Dorsal NucleusMethodologyModelingMotivationMotor NeuronsNeuromodulatorNeuronsOutputPatientsPerformancePeriodicalsPeriodicityPhasePhysiologicalPhysiologyPlayPrimatesPropertyPulvinar structureReticular CellRoleSamplingSchizophreniaSensorySignal TransductionTestingThalamic NucleiThalamic structureTheta RhythmTimeTupaiidaeUncertaintyVariantVisualWorkbehavior predictionbehavioral outcomebiophysical modelcell typecognitive controlexperimental studyinformation gatheringneuralneuroregulationnonhuman primatenovelresponsesensory inputsensory integrationspellingsustained attentionsynergismvisual motor
项目摘要
Project summary
The aim of Core B is to provide an adequately detailed biophysical model of thalamocortical interactions to allow
the model to guide experiments of the Thalamus Conte Center, especially Projects P1-P3. The Center is
proposing to understand the function of higher-order thalamus in tasks involving attention and decision making,
particularly when there are uncertainties in sensory input or context. The Center hypothesis is that higher-order
thalamic nuclei in the primate brain, particularly the mediodorsal nucleus (MD) and the pulvinar (PUL), play a
fundamental role in integrating and gating cortical activity and coordinating information flow across large-scale
cortical networks. Indeed, we propose that an understanding of the functioning of cortical cognitive networks in
the primate brain is not possible without understanding the interactions of cortex and thalamus. The experiments
to be done in P1-P3 involve non-human primates and tree shrews in a way that will constrain circuit models of
both dynamics and function. In addition, the group will also investigate animal models of schizophrenia (SZ)
(P3). In both the normal and SZ animal models, the experimentalist will gather information about brain rhythms
and spike timing need for the model. Our model will also be informed by network data from healthy humans (P4)
and Schizophrenia patients (P5). The computational model to be constructed in core B will use the detailed
physiological framework of Hodgkin-Huxley equations, constrained by currently available and future data. The
model will be built with multiple modules, each with multiple cell types, each producing multiple kinds of dynamics
that can themselves change rhythmically on a slow time scale. Each of these modules can change with effects
of neuromodulation, and the functional connections among them are also subject to modulation. Such a complex
model needs to be highly constrained, and we will make use of a novel methodology in which each module is
constrained by known physiology plus the multiple dynamical behaviors that it must produce with different inputs.
The anatomy of the model is partly motivated by earlier work with Kastner explaining the roles of multiple brain
rhythms in a spatial attention task and showing that those frequencies are functionally important. Indeed, the
current work, in which the tasks require us to consider similarly complex interactions, raises the very general and
important question: Is such biological complexity important for function, and in what ways? We hypothesize that
the known complex rhythms are essential to function; in the proposed work of Core B, we aim to spell out in what
ways those dynamics are important in the context of tasks requiring attention, decision making and rule changing.
In Aim 1, we investigate the effects of cortical dynamics on pulvinar and MD. In Aim 2, we consider the changes
in dynamics when there is uncertainty about which is the cue and there is switching in the rule. In Aim3, in the
context of schizophrenia, we consider how dysfunctions in thalamic rhythms and in inhibitory function can lead
to cognitive deficits, using the work of Aims 1 and 2. This work is expected to contribute to answers to the
question of why the higher order thalamus is needed for cognition.
项目摘要
核B的目的是提供丘脑皮质相互作用的充分详细的生物物理模型,以允许
指导Thalamus Conte中心的实验的模型,尤其是Project P1-P3。中心是
建议了解高阶丘脑在涉及注意和决策的任务中的功能,
特别是当感觉输入或上下文中存在不确定性时。中心假设是高阶
灵长类动物大脑中的丘脑核,尤其是中正核(MD)和pulvinar(pul),播放
在整合和门控皮质活动和协调大规模的信息流中的基本作用
皮质网络。确实,我们建议对皮质认知网络功能的理解
如果不了解皮质和丘脑的相互作用,灵长类动物的大脑是不可能的。实验
在P1-P3中进行的涉及非人类灵长类动物和树sh,以限制电路模型的方式
动力和功能。此外,该小组还将研究精神分裂症的动物模型(SZ)
(P3)。在正常动物模型和SZ动物模型中,实验者将收集有关大脑节奏的信息
和模型的尖峰时序需要。我们的模型还将通过健康人的网络数据(P4)告知
和精神分裂症患者(P5)。核心B中要构建的计算模型将使用详细的
Hodgkin-Huxley方程的生理框架,受当前可用数据和未来数据的约束。这
模型将使用多个模块构建,每个模块都有多种单元格类型,每种模块都会产生多种动力学
这本身可以在缓慢的时间范围内进行节奏。这些模块中的每一个都可以随效果而变化
神经调节以及它们之间的功能连接也受到调节。如此复杂
模型需要受到高度限制,我们将利用一种新方法,每个模块是
受已知生理学以及必须用不同输入产生的多种动态行为的限制。
该模型的解剖学部分是由与卡斯特纳(Kastner)早期工作解释了多个大脑的作用的动机
在空间注意任务中的节奏,并表明这些频率在功能上很重要。确实,
当前的工作,任务要求我们考虑类似复杂的互动,并提高了一般性的互动
重要问题:这种生物学复杂性对功能以及哪种方式重要?我们假设这一点
已知的复杂节奏对于功能至关重要。在核心B的拟议工作中,我们的目标是阐明
这些动态在需要注意,决策和规则改变的任务中很重要。
在AIM 1中,我们研究了皮质动力学对Pulvinar和MD的影响。在AIM 2中,我们考虑更改
在动态中,当存在提示的不确定性时,规则中有切换。在AIM3中
精神分裂症的背景,我们考虑丘脑节奏和抑制功能中的功能障碍如何
使用AIM 1和2的工作,以认知缺陷。这项工作有望有助于答案
为什么需要高阶丘脑才能进行认知的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NANCY KOPELL其他文献
NANCY KOPELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NANCY KOPELL', 18)}}的其他基金
Project 4: Mathematical Modeling Studies of Anesthetic Action
项目4:麻醉作用的数学模型研究
- 批准号:
9209580 - 财政年份:2017
- 资助金额:
$ 34.55万 - 项目类别:
Project 4: Mathematical Modeling Studies of Anesthetic Action
项目4:麻醉作用的数学模型研究
- 批准号:
10093080 - 财政年份:2017
- 资助金额:
$ 34.55万 - 项目类别:
High-Frequency Rhythms of the Neocortex: Mechanisms and Interactions
新皮质的高频节律:机制和相互作用
- 批准号:
7502480 - 财政年份:2009
- 资助金额:
$ 34.55万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Extending Reach, Accuracy, and Therapeutic Capabilities: A Soft Robot for Peripheral Early-Stage Lung Cancer
扩大范围、准确性和治疗能力:用于周围早期肺癌的软机器人
- 批准号:
10637462 - 财政年份:2023
- 资助金额:
$ 34.55万 - 项目类别:
A Digital Twin for Designing Bladder Treatment informed by Bladder Outlet Obstruction Mechanobiology (BOOM)
根据膀胱出口梗阻力学生物学 (BOOM) 设计膀胱治疗的数字孪生
- 批准号:
10659928 - 财政年份:2023
- 资助金额:
$ 34.55万 - 项目类别:
Acoustic-anatomic modeling and development of a patient-specific wearable therapeutic ultrasound device for peripheral arterial disease
针对外周动脉疾病的患者专用可穿戴超声治疗设备的声学解剖建模和开发
- 批准号:
10603253 - 财政年份:2023
- 资助金额:
$ 34.55万 - 项目类别:
Representing Human Anatomy for Computation and Communication: Synergistic Development of an Anatomical Ontology and Semantically-Augmented Anatomical Graphics
代表人体解剖学进行计算和通信:解剖本体论和语义增强解剖图形的协同发展
- 批准号:
10635511 - 财政年份:2023
- 资助金额:
$ 34.55万 - 项目类别:
Brain-wide Neuronal Circuit Mapping with X-ray Nano-Holography
利用 X 射线纳米全息术绘制全脑神经元回路
- 批准号:
10877549 - 财政年份:2023
- 资助金额:
$ 34.55万 - 项目类别: