Genomic control of gene regulatory networks governing early human lineage decisions
控制早期人类谱系决策的基因调控网络的基因组控制
基本信息
- 批准号:10630157
- 负责人:
- 金额:$ 133万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-19 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqAdultAtlasesAttentionBackBinding SitesBiological AssayBiological ModelsCRISPR interferenceCRISPR screenCell Fate ControlCell modelCell physiologyCellsChIP-seqChromatin Conformation Capture and SequencingClustered Regularly Interspaced Short Palindromic RepeatsCodeComputing MethodologiesDNA ComputationsDNA Sequence AnalysisDataData SetDevelopmentDevelopmental BiologyDiseaseEctodermElementsEmbryoEmbryonic DevelopmentEmerging TechnologiesEndodermEnhancersEpiblastGene ExpressionGenerationsGenesGeneticGenomicsGerm CellsGerm LayersGoalsHealthHi-CHistonesHomeostasisHumanHuman DevelopmentIndividualKnowledgeLearningMachine LearningMaintenanceMalignant NeoplasmsMapsMass Spectrum AnalysisMeasurementMesodermModelingMusNatural regenerationNeuroectodermOrganoidsPathologicPathway AnalysisPeripheralPhenotypePhysiologicalProteinsProteomicsPublishingRecordsRegulatory ElementResearch PersonnelResolutionRoleSequence AnalysisSignal TransductionSomatic CellSystemSystems BiologyTestingTissuesVariantWorkalgorithmic methodologiescell typedesignfunctional genomicsgene regulatory networkgenetic variantgenome-widegenomic variationhuman embryonic stem cellimprovedinnovationmathematical modelmultimodalitynetwork modelspluripotencypredictive modelingscreeningself-renewalsingle-cell RNA sequencingstem cell biologystem cell differentiationtemporal measurementtranscription factortranscriptome sequencing
项目摘要
ABSTRACT
Predicting the impact of genomic variation requires quantitative modeling to deconstruct the interplay
between multiple individual variants and to determine their combined effects on gene regulatory networks
(GRNs) that control cell state and cell function. We focus on the GRNs that control early human development
as a paradigm. Arguably the most important lineage decision during mammalian development is the decision of
epiblast cells to exit the pluripotent state (a state when the cells have the potential to give rise to all somatic
cells and germ cells), and differentiate into one of the three primary germ layers, the endoderm, mesoderm,
and ectoderm. This pluripotent state and the trilineage differentiation can be captured using cultured human
embryonic stem cells (hESCs). Much attention has focused on the GRNs underlying the maintenance of the
self-renewing pluripotent state, but the GRNs governing hESC trilineage differentiation remain largely
unexplored. We previously conducted genome-scale CRISPR/Cas screens to discover protein-coding genes
that regulate the transition of hESCs to definitive endoderm. Based on the genomic and genetic data and
machine learning (gkm-SVM sequence analysis), we expanded our initial simple two transcription factor (TF)
model to a multiple TF cooperative model. Here we propose an integrative approach examining the hESC
transition to definitive endoderm, mesoderm and neuroectoderm germ layer identities to improve the
generalizability of GRN models. We will perform quantitative genomic and proteomic measurements with high
temporal and single-cell resolution. These quantitative measurements will be combined with perturbation of key
GRN elements, core TFs and their target enhancers, to inform the generation of dynamic GRN models. To
further improve the precision of our new GRN models, we will map cell trajectories during state transitions
through lineage tracing combined with scRNA-seq. Beyond hESC guided differentiation, the physiological
relevance of enhancers will be further interrogated in human and mouse organoids (gastruloids) and mouse
embryos. We will then apply innovative new computational and algorithmic methods to our multimodal
experimental data to generate GRN models, aiming to learn generalizable principles underlying the
contribution of genomic variants to cellular and ultimately organismal phenotypes. Developing GRN models for
the exit of pluripotency and the acquisition of germ layer identities involves dynamic modeling of the cell state
transition, which will not only inform our understanding of early human development, but can also serve as the
basis for construction of generalizable GRN models for biological transitions during embryonic development,
adult tissue homeostasis and regeneration as well as inappropriate cell fate transitions that occur in
pathological conditions such as cancer.
抽象的
预测基因组变异的影响需要定量建模以解构相互作用
在多个单个变体之间,并确定它们对基因调节网络的综合影响
(GRN)控制细胞状态和细胞功能。我们专注于控制早期人类发展的GRN
作为范式。可以说,哺乳动物发展过程中最重要的血统决定是
培养细胞以退出多能状态(当细胞有可能产生所有体细胞的状态
细胞和生殖细胞),并分化为三个主要的生殖层之一,内胚层中胚层,
和外胚层。可以使用培养的人来捕获这种多能状态和三利差分区分
胚胎干细胞(HESC)。非常关注的关注于维护的基础的GRN
自我更新多能状态,但管理hESC三利差分的grn在很大程度上仍然存在
未探索。我们以前进行了基因组尺度CRISPR/CAS筛选以发现蛋白质编码基因
调节hESC向确定的内胚层的过渡。基于基因组和遗传数据以及
机器学习(GKM-SVM序列分析),我们扩展了初始简单的两个转录因子(TF)
模型为多个TF合作模型。在这里,我们提出了一种检查hESC的综合方法
过渡到确定的内胚层,中胚层和神经外胚层生殖层身份,以改善
GRN模型的概括性。我们将执行具有较高的定量基因组和蛋白质组学测量
时间和单细胞分辨率。这些定量测量将与钥匙的扰动结合在一起
GRN元素,核心TFS及其目标增强剂,以告知动态GRN模型的产生。到
进一步提高了我们新的GRN模型的精度,我们将在状态过渡期间绘制细胞轨迹
通过谱系跟踪与scrna-seq结合。 hESC超越了差异化,生理学
增强子的相关性将在人类和小鼠类器官(胃底子)和小鼠中进一步询问
胚胎。然后,我们将在我们的多模式中应用创新的新计算和算法方法
实验数据生成GRN模型,旨在学习基础的可概括原则
基因组变体对细胞和最终有机表型的贡献。开发GRN模型
多能性的退出和菌属身份的获取涉及细胞状态的动态建模
过渡,这不仅会告知我们对早期人类发展的理解,还可以作为
在胚胎发育过程中建造可泛化的GRN模型的基础,
成人组织稳态和再生以及不适当的细胞命运转变
病理状况,例如癌症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael A Beer其他文献
Machine Learning Sequence Modeling Identifies Gene Regulatory Responses to Bone Marrow Stromal Interactions in Multiple Myeloma
- DOI:
10.1182/blood-2023-186981 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Milad Razavi-Mohseni;Dustin Shigaki;Michael A Beer - 通讯作者:
Michael A Beer
Michael A Beer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael A Beer', 18)}}的其他基金
Sequence-based Machine Learning for Inference of Dynamic Cell State Gene Network Models
基于序列的机器学习用于动态细胞状态基因网络模型的推理
- 批准号:
10665735 - 财政年份:2022
- 资助金额:
$ 133万 - 项目类别:
Genomic control of gene regulatory networks governing early human lineage decisions
控制早期人类谱系决策的基因调控网络的基因组控制
- 批准号:
10297375 - 财政年份:2021
- 资助金额:
$ 133万 - 项目类别:
Genomic control of gene regulatory networks governing early human lineagedecisions
控制早期人类谱系决定的基因调控网络的基因组控制
- 批准号:
10833813 - 财政年份:2021
- 资助金额:
$ 133万 - 项目类别:
Genomic control of gene regulatory networks governing early human lineage decisions
控制早期人类谱系决策的基因调控网络的基因组控制
- 批准号:
10471939 - 财政年份:2021
- 资助金额:
$ 133万 - 项目类别:
Genomic control of gene regulatory networks governing early human lineagedecisions
控制早期人类谱系决定的基因调控网络的基因组控制
- 批准号:
10840531 - 财政年份:2021
- 资助金额:
$ 133万 - 项目类别:
Systematic Identification of Core Regulatory Circuitry from ENCODE Data
从 ENCODE 数据系统识别核心监管电路
- 批准号:
10238262 - 财政年份:2017
- 资助金额:
$ 133万 - 项目类别:
SVM-based Analysis of the Fine Scale Structure of Regulatory Elements
基于支持向量机的监管要素精细尺度结构分析
- 批准号:
9097757 - 财政年份:2013
- 资助金额:
$ 133万 - 项目类别:
SVM-based Analysis of the Fine Scale Structure of Regulatory Elements
基于支持向量机的监管要素精细尺度结构分析
- 批准号:
9304811 - 财政年份:2013
- 资助金额:
$ 133万 - 项目类别:
SVM-based Analysis of the Fine Scale Structure of Regulatory Elements
基于支持向量机的监管要素精细尺度结构分析
- 批准号:
8889287 - 财政年份:2013
- 资助金额:
$ 133万 - 项目类别:
SVM-based Analysis of the Fine Scale Structure of Regulatory Elements
基于支持向量机的监管要素精细尺度结构分析
- 批准号:
8556758 - 财政年份:2013
- 资助金额:
$ 133万 - 项目类别:
相似国自然基金
面向图神经网络ATAC-seq模体识别的最小间隔单细胞聚类研究
- 批准号:62302218
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:82260745
- 批准年份:2022
- 资助金额:33.00 万元
- 项目类别:地区科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:32100438
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
High resolution genomic and epigenomic mapping of the human salivary gland
人类唾液腺的高分辨率基因组和表观基因组图谱
- 批准号:
10727190 - 财政年份:2023
- 资助金额:
$ 133万 - 项目类别:
Characterization of Epstein-Barr Virus Subversion of the Host SMC5/6 Restriction Pathway
Epstein-Barr 病毒颠覆宿主 SMC5/6 限制途径的特征
- 批准号:
10679118 - 财政年份:2023
- 资助金额:
$ 133万 - 项目类别:
Engineering 3D Osteosarcoma Models to Elucidate Biology and Inform Drug Discovery
工程 3D 骨肉瘤模型以阐明生物学并为药物发现提供信息
- 批准号:
10564801 - 财政年份:2023
- 资助金额:
$ 133万 - 项目类别:
Identifying human-specific neural progenitors and their role in neurodevelopment
识别人类特异性神经祖细胞及其在神经发育中的作用
- 批准号:
10662868 - 财政年份:2023
- 资助金额:
$ 133万 - 项目类别: