Activation and Inhibition Mechanisms of Calcium-Activated Nonselective Cation Channels
钙激活非选择性阳离子通道的激活和抑制机制
基本信息
- 批准号:10629410
- 负责人:
- 金额:$ 64.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAmino Acid MotifsBindingBinding SitesBrugada syndromeCRISPR/Cas technologyCalciumCardiacCardiovascular systemCationsCellsClinicalClustered Regularly Interspaced Short Palindromic RepeatsCryoelectron MicroscopyDNA Sequence AlterationDataDiseaseExhibitsFluorometryHumanImmune systemInheritedInterventionIon ChannelKnock-in MouseKnowledgeLeadLinkMembraneMembrane PotentialsMethodsModelingMolecularMolecular ConformationMonitorMonovalent CationsMutationNervous SystemOrganPermeabilityPharmacologic SubstancePhenotypePhysiologicalPlayProcessPropertyRoleSideSignal TransductionSiteSkinStructureSyndromeTRPM5 geneTestingTissuesdisease phenotypefluorescence imaginggain of functiongain of function mutationhuman diseaseinhibitorinterdisciplinary approachmouse modelmutantnovelpatch clampskin disordervoltage
项目摘要
Project Summary
Ca2+-activated nonselective cation (CAN) channels are among a few ion channels that convert
intracellular Ca2+ signaling into changes in membrane potential, in contrast to most ion
channels that directly or indirectly use membrane potential to regulate intracellular Ca2+
signaling. This unique property allows CAN channels to play critical roles in many tissues and
organs. While the existence of CAN channels has been known for decades, recent evidence
has established that monovalent cation-permeable TRPM4 and TRPM5 are the long sought
for CAN channels. Indeed, numerous TRPM4 mutations are linked to severe human diseases,
e.g., cardiac conduction block, Bragada syndrome, PSEK (a skin disease). Despite their
functional significance, little is known about the molecular mechanisms governing TRPM4&5
channels activity. Ca2+ is the only known physiological activator for them, though membrane
potential also regulates channel activity but only in the presence of Ca2+. However, while the
Ca2+-binding sites have been identified by cryo-EM studies, how Ca2+ and voltage activate
TRPM4&5 channels remains unknown. Furthermore, while most known disease-causing
TRPM4 mutations lead to a gain-of-function phenotype, no effective inhibitor for TRPM4&5 is
currently available. Based on our preliminary functional data on TRPM4 Ca2+ and voltage
activation, our discovery of novel TRPM4 mutations causing human skin disease, a new
disease-causing mutant channel CRISPR mouse model exhibiting skin phenotypes, and our
recent discovery of a novel TRPM4 inhibition process, we plan to use a multidisciplinary
approach aiming at revealing the fundamental mechanisms of TRPM4&5 activation and
inhibition.
项目概要
Ca2+ 激活的非选择性阳离子 (CAN) 通道是少数可转化的离子通道之一
与大多数离子相反,细胞内 Ca2+ 信号转导成膜电位的变化
直接或间接利用膜电位调节细胞内Ca2+的通道
发信号。这种独特的特性使得 CAN 通道在许多组织和组织中发挥关键作用
器官。尽管 CAN 通道的存在已为人所知数十年,但最近的证据
已确定单价阳离子渗透性 TRPM4 和 TRPM5 是长期寻求的
对于 CAN 通道。事实上,许多 TRPM4 突变与严重的人类疾病有关,
例如,心脏传导阻滞、布拉加达综合征、PSEK(一种皮肤病)。尽管他们的
功能意义,但对于控制 TRPM4&5 的分子机制知之甚少
渠道活动。 Ca2+ 是它们唯一已知的生理激活剂,尽管膜
电位还调节通道活性,但仅限于存在 Ca2+ 的情况下。然而,虽然
Ca2+ 结合位点已通过冷冻电镜研究确定,Ca2+ 和电压如何激活
TRPM4&5 通道仍然未知。此外,虽然大多数已知的致病因素
TRPM4 突变导致功能获得表型,目前尚无有效的 TRPM4&5 抑制剂
目前可用。基于我们关于 TRPM4 Ca2+ 和电压的初步功能数据
激活,我们发现导致人类皮肤病的新型TRPM4突变,一种新的
表现出皮肤表型的致病突变通道 CRISPR 小鼠模型,以及我们的
最近发现了一种新的 TRPM4 抑制过程,我们计划使用多学科的方法
旨在揭示 TRPM4&5 激活的基本机制的方法
抑制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Du其他文献
Juan Du的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Du', 18)}}的其他基金
Structural Basis of Nociceptor Channel TRPM3 gating and pharmacology
伤害感受器通道 TRPM3 门控和药理学的结构基础
- 批准号:
10735377 - 财政年份:2023
- 资助金额:
$ 64.58万 - 项目类别:
Deep-learning methods based computational modeling
基于深度学习方法的计算建模
- 批准号:
10816248 - 财政年份:2022
- 资助金额:
$ 64.58万 - 项目类别:
Activation and Inhibition Mechanisms of Calcium-Activated Nonselective Cation Channels
钙激活非选择性阳离子通道的激活和抑制机制
- 批准号:
10503201 - 财政年份:2022
- 资助金额:
$ 64.58万 - 项目类别:
Structural and functional studies of the TRPM2 channel
TRPM2通道的结构和功能研究
- 批准号:
10604261 - 财政年份:2019
- 资助金额:
$ 64.58万 - 项目类别:
Structural and functional studies of the TRPM2 channel
TRPM2通道的结构和功能研究
- 批准号:
10413415 - 财政年份:2019
- 资助金额:
$ 64.58万 - 项目类别:
Structural and functional studies of the TRPM2 channel
TRPM2通道的结构和功能研究
- 批准号:
9896879 - 财政年份:2019
- 资助金额:
$ 64.58万 - 项目类别:
Structural and functional studies of the TRPM2 channel
TRPM2通道的结构和功能研究
- 批准号:
10386771 - 财政年份:2019
- 资助金额:
$ 64.58万 - 项目类别:
相似国自然基金
三疣梭子蟹两种含不同关键氨基酸基序C型凝集素的糖识别机制研究
- 批准号:31702375
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
CRAC中心酪氨酸突变介导肝细胞胆小管侧膜BSEP膜胆固醇敏感性及转运功能减退的分子机制
- 批准号:81670580
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
Understanding the origins and mechanisms of aryl hydrocarbon receptor promiscuity
了解芳烃受体混杂的起源和机制
- 批准号:
10679532 - 财政年份:2023
- 资助金额:
$ 64.58万 - 项目类别:
Comprehensive identification of E3 ubiquitin ligases that degrade heart, lung, and blood-relevant transcription factors
全面鉴定可降解心脏、肺和血液相关转录因子的 E3 泛素连接酶
- 批准号:
10677457 - 财政年份:2023
- 资助金额:
$ 64.58万 - 项目类别:
A Novel high resolution MS platform for high-throughput screening of G protein-coupled receptors
用于高通量筛选 G 蛋白偶联受体的新型高分辨率 MS 平台
- 批准号:
10636377 - 财政年份:2023
- 资助金额:
$ 64.58万 - 项目类别:
Therapeutic targeting of MYC interactions with an essential cofactor
MYC 与重要辅因子相互作用的治疗靶向
- 批准号:
10512309 - 财政年份:2022
- 资助金额:
$ 64.58万 - 项目类别:
The molecular characterization of sex-specific piRNA transcription and snRNA transcription in C. elegans
线虫性别特异性 piRNA 转录和 snRNA 转录的分子特征
- 批准号:
10464652 - 财政年份:2022
- 资助金额:
$ 64.58万 - 项目类别: