Structural and functional studies of the TRPM2 channel
TRPM2通道的结构和功能研究
基本信息
- 批准号:10413415
- 负责人:
- 金额:$ 9.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:Adenosine Diphosphate RiboseAgonistAlzheimer&aposs DiseaseApoptosisBindingBinding SitesBiologicalBiological AssayBody TemperatureBrainBrain InjuriesC-terminalCalciumCardiovascular systemCell DeathCell membraneCell physiologyCellsCharacteristicsCoiled-Coil DomainComplexConsensusCryoelectron MicroscopyCurcuminCyclic ADP-RiboseDataDevelopmentDiabetes MellitusElectrophysiology (science)FamilyFamily memberFeverFoundationsHomologous GeneHumanImmuneImmune responseInflammationIon ChannelIon Channel ProteinIonsKnowledgeLinkLysosomesMetabolismMissionMitochondriaMolecularMolecular StructureN-terminalNerveNeurodegenerative DisordersNucleotidesOxidative StressPathologicPermeabilityPharmaceutical PreparationsPharmacologyPhysiologic ThermoregulationPhysiological ProcessesPlayProtonsPublic HealthResearchResearch Project GrantsRhizomeRoleSolidStrokeStructureTissuesTumericUnited States National Institutes of HealthVascular Smooth MuscleWorkX-Ray CrystallographyZebrafishexperimental studyinsulin secretioninterdisciplinary approachnovelnovel therapeuticsparticlepreventpyrophosphatasereceptorsimulationsulfated glycoprotein 2
项目摘要
Project Summary
Body temperature is strictly maintained in a narrow range to protect the delicate nerves in the brain and other
body tissues, because improper body temperature gives rise to fever, brain injury, and stroke. TRPM2 is the
major warmth-sensing receptor in the brain regulating core body temperature and preventing overheating as
fever occurs. TRPM2 is a Ca2+-permeable, nonselective ion channel that is highly expressed in brain but is
also found in the heart, vascular and smooth muscle, and immune cells. It is uniquely activated by Ca2+ and
ADP ribose (ADPR), a product of the metabolism of NAD+ and a secondary messenger released upon
oxidative stress. The activation of TRPM2 results in both Ca2+ entry across the plasma membrane and Ca2+
release from lysosomes. Therefore, TRPM2 plays fundamental role in Ca2+-dependent array of physiological
processes and cellular functions from insulin secretion to immune response to cell death. It has been
implicated in Alzheimer disease, stroke, and other neurodegenerative diseases.
TRPM2 belongs to the TRPM (melastatin-like transient receptor potential) subfamily of the TRP superfamily.
Despite sharing the characteristic TRPM N-terminal homology regions (MHRs) and C-terminal coiled-coil
domains, TRPM2 is uniquely assembled with a C-terminal NHDT9-H domain, a homolog to the human
mitochondrial ADP-ribose pyrophosphatase NUDT9. Functional studies, including binding assays,
electrophysiology, and molecular simulations, provided a consensus view that ADPR binds to the NUDT9-H
domain, but proof of the ADPR binding site is lacking, and the molecular basis for the action of the agonist
ADPR on TRPM2 in the presence of calcium remains unknown. The gating of TRPM2 is further modulated
by many molecules and ions that range from protons to nucleotides (cyclic ADPR, AMP, 8-Br-cADPR) to
curcumin (which is isolated from rhizomes of Curcuma longa), acting by way of multiple mechanisms. At
present, we don’t know where these molecules and ions bind to TRPM2 or how they activate the channel or
modulate its function.
We have obtained two cryo-EM structures of zebrafish TRPM2 in the apo/closed and ADPR/Ca2+-bound open
state, with the latter representing the first active state of TRPM family members. We identified a novel ADPR
binding site that is located outside the NUDT9-H domain and was completely unknown before. Building on
this preliminary data, we propose to continue the structural studies of TRPM2 combined with complementary
electrophysiology experiments, binding assays, and X-ray crystallography, which will define the molecular
basis for a comprehensive gating mechanism and pharmacology. These advances will provide a solid
foundation for developing new drugs against neurodegenerative diseases and for a deeper understanding
the function of the entire TRPM family.
项目摘要
严格维持体温,以保护大脑和其他
身体组织,因为体温不当会引起发烧,脑损伤和中风。 TRPM2是
大脑中的主要温暖感受体控制核心体温并防止过热
发烧发生。 TRPM2是Ca2+ - 可渗透的非选择性离子通道,在大脑中高度表达,但IS
它被Ca2+唯一激活
ADP Ribose(ADPR),NAD+代谢的产物和次要信使发布
氧化应激。 TRPM2的激活导致CA2+进入质膜和Ca2+
从溶酶体释放。因此,TRPM2在CA2+依赖性生理阵列中扮演基本角色
从胰岛素分泌到对细胞死亡的免疫反应的过程和细胞功能。它一直
在阿尔茨海默氏病,中风和其他神经退行性疾病中实施。
TRPM2属于TRP超家族的TRPM(蓝绿色瞬变受体电位)。
尽管共享特征性的TRPM N末端同源区(MHR)和C端盘绕螺旋。
域,trpm2与C端NHDT9-H域唯一组装在一起,这是人类的同源物
线粒体ADP-核糖焦磷酸酶NUDT9。功能研究,包括结合测定,
电生理学和分子模拟提供了共识的观点,即ADPR与NUDT9-H结合
域,但缺乏ADPR结合位点的证明,而动作的作用的分子基础
在钙存在下TRPM2上的ADPR仍然未知。 TRPM2的门控进一步调制
从质子到核苷酸的许多分子和离子(环状ADPR,AMP,8-BR-CADPR)到
姜黄素(从姜黄的根茎中分离出来),通过多种机制作用。在
目前,我们不知道这些分子和离子在哪里与Trpm2结合或它们如何激活通道或
调节其功能。
我们在apo/note和adpr/ca2+bound Open中获得了斑马鱼TRPM2的两个冷冻EM结构
国家,后者代表了TRPM家庭成员的第一个活跃状态。我们确定了一个新颖的adpr
绑定位点位于NUDT9-H域外,以前是完全未知的。建立
此初步数据,我们建议继续进行TRPM2的结构研究与完整的结合
电生理实验,结合测定和X射线晶体学,这将定义分子
综合门控机制和药理学的基础。这些进步将提供坚实的
开发针对神经退行性疾病的新药的基础和更深入的理解
整个TRPM家族的功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Du其他文献
Juan Du的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Du', 18)}}的其他基金
Structural Basis of Nociceptor Channel TRPM3 gating and pharmacology
伤害感受器通道 TRPM3 门控和药理学的结构基础
- 批准号:
10735377 - 财政年份:2023
- 资助金额:
$ 9.82万 - 项目类别:
Deep-learning methods based computational modeling
基于深度学习方法的计算建模
- 批准号:
10816248 - 财政年份:2022
- 资助金额:
$ 9.82万 - 项目类别:
Activation and Inhibition Mechanisms of Calcium-Activated Nonselective Cation Channels
钙激活非选择性阳离子通道的激活和抑制机制
- 批准号:
10629410 - 财政年份:2022
- 资助金额:
$ 9.82万 - 项目类别:
Activation and Inhibition Mechanisms of Calcium-Activated Nonselective Cation Channels
钙激活非选择性阳离子通道的激活和抑制机制
- 批准号:
10503201 - 财政年份:2022
- 资助金额:
$ 9.82万 - 项目类别:
Structural and functional studies of the TRPM2 channel
TRPM2通道的结构和功能研究
- 批准号:
10604261 - 财政年份:2019
- 资助金额:
$ 9.82万 - 项目类别:
Structural and functional studies of the TRPM2 channel
TRPM2通道的结构和功能研究
- 批准号:
9896879 - 财政年份:2019
- 资助金额:
$ 9.82万 - 项目类别:
Structural and functional studies of the TRPM2 channel
TRPM2通道的结构和功能研究
- 批准号:
10386771 - 财政年份:2019
- 资助金额:
$ 9.82万 - 项目类别:
相似国自然基金
内源激动剂ArA靶向TMEM175蛋白缓解帕金森病症的分子机制研究
- 批准号:32300565
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Adrb2激动剂在改善呼吸机相关性膈肌功能障碍中的作用与机制研究
- 批准号:82372196
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
新型IL2Rβγ激动剂逐级控释联合放疗对抗三阴性乳腺癌的作用及机制研究
- 批准号:82303819
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于OSMAC-GNPS分析策略的蚂蚱内生真菌Aspergillus sp.中新颖泛PPAR激动剂的发现及治疗NASH研究
- 批准号:82304340
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探究FSP1激动剂在治疗肾缺血再灌注损伤中的分子机理与应用
- 批准号:82304600
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 9.82万 - 项目类别:
Role of kynurenic acid in higher cognitive deficits: Mechanism and treatment strategies
犬尿酸在较高认知缺陷中的作用:机制和治疗策略
- 批准号:
10715487 - 财政年份:2023
- 资助金额:
$ 9.82万 - 项目类别:
GPR39 as a Therapeutic Target in Aging-Related Vascular Cognitive Impairment and Dementia
GPR39 作为衰老相关血管认知障碍和痴呆的治疗靶点
- 批准号:
10734713 - 财政年份:2023
- 资助金额:
$ 9.82万 - 项目类别:
Evaluating a novel, orally-active TREM2-targeting drug in AD
评估一种新型口服活性 TREM2 靶向药物治疗 AD 的效果
- 批准号:
10735206 - 财政年份:2023
- 资助金额:
$ 9.82万 - 项目类别:
A neurobiological investigation of cannabis use and misuse in Veterans
退伍军人大麻使用和滥用的神经生物学调查
- 批准号:
10588526 - 财政年份:2023
- 资助金额:
$ 9.82万 - 项目类别: