Removal of damaged mitochondria by alternative autophagy
通过替代自噬去除受损的线粒体
基本信息
- 批准号:10630824
- 负责人:
- 金额:$ 57.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AgingAutophagocytosisAutophagosomeBiogenesisCardiacCardiac MyocytesChIP-seqChronicChronic PhaseConsumptionDevelopmentDiabetes MellitusDifferentiation and GrowthExcisionFunctional disorderFundingGenesGenetic TranscriptionGoalsHeartHeart DiseasesHeart HypertrophyHeart failureHigh Fat DietHomeostasisImpairmentInflammationInterventionIschemiaKnockout MiceKnowledgeMediatingMetabolismMitochondriaMolecularMorphologyMusMyocardial dysfunctionOrganellesParkinPathologicPhasePlayProductionPropertyProteinsQuality ControlRIPK1 geneRoleStressTFE3 geneTestingTranscription CoactivatorUp-Regulationcell typediabetic cardiomyopathydiabetic patientheart cellimprovedin vivolipidomicsloss of functionmitochondrial dysfunctionmouse modelmyocardial injurynovelobese personpreventprogramsprotein complexresponsetranscriptome
项目摘要
Summary
Mitochondria are central intracellular organelles that mediate metabolism and ATP production. In order to
maintain the function of mitochondria during stress, cardiomyocytes (CMs) have multiple layers of quality
control mechanisms mediating mitochondrial fission/fusion, degradation and biogenesis. Mitophagy, a
mitochondria-selective form of autophagy, is a major mechanism of degradation of damaged mitochondria and
protects the heart against heart failure. In general, mitophagy is induced by the same molecular mechanisms
commonly used by general autophagy, including “autophagy-related” (Atg) molecules, and additional
molecules, including Pink1/Parkin. However, increasing lines of evidence suggest that mitophagy is also
induced independently of conventional autophagy. During the past funding cycle, we have shown that an
unconventional form of mitophagy plays a more critical role in protecting the heart during ischemia than the
conventional form of mitophagy. This unconventional form of mitophagy, called alternative mitophagy, utilizes
molecular machinery distinct from that used by conventional mitophagy, namely the Ulk1-Rab9-Rip1-Drp1
protein complex. Currently, the functional significance and the molecular mechanisms of alternative mitophagy
remain poorly understood. Our long-term goal is to demonstrate the functional significance of alternative
mitophagy in the heart during chronic and more pathologically relevant conditions in vivo, elucidate the
underlying molecular mechanisms, and eventually apply our knowledge to treat heart disease by stimulating
alternative mitophagy. Interestingly, although conventional autophagy and mitophagy are activated in response
to high fat diet (HFD) consumption in the mouse model of diabetic cardiomyopathy, their activation is transient
and they protect the heart only during the early phase of HFD consumption. On the other hand, an
unconventional form of mitophagy is activated in a more prolonged manner and appears to play an essential
role in protecting the heart during the chronic phase of HFD consumption. We here hypothesize that
alternative mitophagy is the predominant form of mitophagy in the heart during the chronic phase of
HFD consumption and plays an essential role in protecting the heart against diabetic cardiomyopathy.
Alternative mitophagy is activated through a TFE3-dependent transcriptional program and the direct
association of a large protein complex, containing Drp1 and Drp1 interacting proteins, with
mitochondria. We will test our hypothesis using unique indicators of mitophagy, genetically altered mouse
models, morphological analyses, including immunogold analyses, lipidomics, transcriptome analyses, and
ChIP-sequencing analyses. Our study will demonstrate a novel and targetable mitochondrial quality control
mechanism during the chronic development of diabetic cardiomyopathy. Our study should lead to the
development of novel interventions to maintain the quality of mitochondria in diabetic patients and alleviate
their cardiac complications, including cardiac hypertrophy/dysfunction, lipotoxicity, and inflammation.
概括
线粒体是介导代谢和ATP产生的中央细胞内细胞器。为了
在压力期间保持线粒体的功能,心肌细胞(CMS)具有多层质量
控制线粒体裂变/融合,降解和生物发生的控制机制。线粒体,a
线粒体选择性的自噬形式是降解线粒体和线粒体降解的主要机制
保护心脏免受心力衰竭。通常,线粒体由相同的分子机制诱导
普通自噬通常使用,包括“自噬相关”(ATG)分子和其他
分子,包括Pink1/Parkin。但是,越来越多的证据表明线粒体也是
独立于常规自噬诱导。在过去的资金周期中,我们已经表明
线粒体的非常规形式在缺血期间保护心脏中起着更关键的作用
线粒体的常规形式。线粒体的这种非常规形式,称为替代线粒体,利用
分子机械与常规线粒体所用的机械,即ULK1-RAB9-RIP1-DRP1
蛋白质复合物。目前,替代线粒体的功能意义和分子机制
保持不当理解。我们的长期目标是证明替代方案的功能意义
在体内慢性且在病理上相关的情况下,心脏中的线粒体在体内阐明
潜在的分子机制,有时将我们的知识通过刺激来治疗心脏病
替代线粒体。有趣的是,尽管传统的自噬和线粒体被激活以响应
在糖尿病心肌病小鼠模型中,高脂肪饮食(HFD)消耗,它们的激活是短暂的
它们只有在HFD消费的早期才能保护心脏。另一方面,
线粒体的非常规形式以更延长的方式激活,并且似乎起着必不可少的
在HFD消费的慢性阶段保护心脏方面的作用。我们在这里假设
替代线粒体是在心脏中主要形式的线粒体形式
HFD消耗并在保护心脏侵害糖尿病心肌病中起着至关重要的作用。
通过TFE3依赖性转录程序和直接激活替代线粒体
大型蛋白质复合物的缔合,其中包含DRP1和DRP1相互作用蛋白与
线粒体。我们将使用线粒体,遗传改变的小鼠的独特指标检验我们的假设
模型,形态学分析,包括免疫元分析,脂质组学,转录组分析和
芯片序列分析。我们的研究将证明一种新颖且具有目标的线粒体质量控制
糖尿病心肌病长期发育过程中的机制。我们的研究应该导致
开发新的干预措施,以维持糖尿病患者线粒体的质量并减轻
它们的心脏并发症,包括心脏肥大/功能障碍,脂肪毒性和炎症。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Alternative mitophagy is a major form of mitophagy in the chronically stressed heart.
替代性线粒体自噬是长期应激心脏中线粒体自噬的主要形式。
- DOI:10.1080/15548627.2022.2025573
- 发表时间:2022
- 期刊:
- 影响因子:13.3
- 作者:Sadoshima,Junichi
- 通讯作者:Sadoshima,Junichi
Leducq Network: Modulating Autophagy to Treat Cardiovascular Disease.
- DOI:10.1161/circresaha.118.313091
- 发表时间:2018-07-20
- 期刊:
- 影响因子:20.1
- 作者:Madrigal-Matute J;Scorrano L;Sadoshima J
- 通讯作者:Sadoshima J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junichi Sadoshima其他文献
Junichi Sadoshima的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junichi Sadoshima', 18)}}的其他基金
PPARα induces IL-6 to trigger diabetic cardiomyopathy
PPARα 诱导 IL-6 引发糖尿病心肌病
- 批准号:
10317052 - 财政年份:2019
- 资助金额:
$ 57.15万 - 项目类别:
PPARα induces IL-6 to trigger diabetic cardiomyopathy
PPARα 诱导 IL-6 引发糖尿病心肌病
- 批准号:
10534143 - 财政年份:2019
- 资助金额:
$ 57.15万 - 项目类别:
PPARα induces IL-6 to trigger diabetic cardiomyopathy
PPARα 诱导 IL-6 引发糖尿病心肌病
- 批准号:
9902080 - 财政年份:2019
- 资助金额:
$ 57.15万 - 项目类别:
PPARα induces IL-6 to trigger diabetic cardiomyopathy
PPARα 诱导 IL-6 引发糖尿病心肌病
- 批准号:
10062516 - 财政年份:2019
- 资助金额:
$ 57.15万 - 项目类别:
Removal of damaged mitochondria by alternative autophagy
通过替代自噬去除受损的线粒体
- 批准号:
10305935 - 财政年份:2017
- 资助金额:
$ 57.15万 - 项目类别:
Removal of damaged mitochondria by alternative autophagy
通过替代自噬去除受损的线粒体
- 批准号:
10452680 - 财政年份:2017
- 资助金额:
$ 57.15万 - 项目类别:
Removal of damaged mitochondria by alternative autophagy
通过替代自噬去除受损的线粒体
- 批准号:
9978602 - 财政年份:2017
- 资助金额:
$ 57.15万 - 项目类别:
REGULATION OF MYOCARDIAL GROWTH AND DEATH BY THE HIPPO PATHWAY
HIPPO 通路对心肌生长和死亡的调节
- 批准号:
8764135 - 财政年份:2013
- 资助金额:
$ 57.15万 - 项目类别:
相似海外基金
Arginyl-tRNA beyond translation: mechanism and regulation of protein arginylation
超越翻译的精氨酰-tRNA:蛋白质精氨酰化的机制和调控
- 批准号:
10711167 - 财政年份:2023
- 资助金额:
$ 57.15万 - 项目类别:
Epigenetic regulation of autophagy and stemness of MSCs in skeletal aging
骨骼衰老过程中间充质干细胞自噬和干性的表观遗传调控
- 批准号:
10901048 - 财政年份:2023
- 资助金额:
$ 57.15万 - 项目类别:
Dissecting GWAS Identified Risk Variants in Parkinson's Disease – Functional Role of GPNMB in the Pathogenesis of PD
剖析 GWAS 确定的帕金森病风险变异 — GPNMB 在帕金森病发病机制中的功能作用
- 批准号:
10680117 - 财政年份:2023
- 资助金额:
$ 57.15万 - 项目类别:
Role of selective autophagy in aging and neurodegeneration: a small molecule approach
选择性自噬在衰老和神经退行性变中的作用:一种小分子方法
- 批准号:
10573102 - 财政年份:2023
- 资助金额:
$ 57.15万 - 项目类别: