Role of selective autophagy in aging and neurodegeneration: a small molecule approach
选择性自噬在衰老和神经退行性变中的作用:一种小分子方法
基本信息
- 批准号:10573102
- 负责人:
- 金额:$ 12.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-15 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcid LipaseAddressAffectAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease patientAstrocytesAutophagocytosisAutophagosomeAutopsyBindingBinding ProteinsBrainCaenorhabditis elegansCandidate Disease GeneCell modelCell physiologyCellsCeramidesCharacteristicsChronic DiseaseDepositionDeteriorationDiseaseDisease ProgressionExhibitsFailureFutureGenesGeneticHealthHomeostasisHumanIndividualInterventionKnowledgeLinkLipidsLongevityLysosomesMaintenanceMembraneMethodsModelingMolecularMolecular ProfilingNematodaNerve DegenerationNeurodegenerative DisordersNeuronsOrganoidsPathogenicityPathway interactionsPhenotypePlayProcessProteinsProteomicsRecyclingResearchRoleTherapeuticTissuesVesicleage relatedcell injurycombatdesignefficacy evaluationfamilial Alzheimer diseasefitnessfunctional restorationhealthspanhigh throughput screeninghuman diseaseimprovedinsightknock-downmolecular phenotypenervous system disordernovelpharmacologicpreservationprotein aggregationreceptorreceptor functionrecruitscreeningsmall moleculetool
项目摘要
PROJECT SUMMARY/ABSTRACT
A hypothesis of aging is that the accumulation of cellular damage can lead to tissue malfunction and organismal
deterioration. A key mechanism for maintaining cellular homeostasis and preserving cell function is autophagy,
a hydrolytic cellular recycling process whereby cytosolic materials, referred to as cargo, including lipid droplets
(LDs) and damaged proteins, are degraded in the lysosome. In turn, aberrations in autophagy can result in the
accumulation of different toxic cytosolic contents, which is a molecular signature of many age-related disorders,
including neurodegeneration. While there is a prominent functional link between autophagy, aging and diseases,
the molecular mechanisms that cause the age-dependent decreases in autophagy remain unclear.
Notably, autophagy can also selectively recruit one type of molecule for degradation. Recent studies support
the hypothesis that selective autophagy plays a crucial role in combating chronic diseases. Several human brain
post-mortem studies have uncovered lipid species that accumulate in brains affected by Alzheimer’s disease
(AD), possibly impeding neuronal function and thereby contributing to neurodegeneration. Therefore, discovering
different interventions that can be used to affect lipophagy (LD turnover) selectively may be ideal for tackling
lipidotoxicity-linked AD. However, such pharmacological or genetic tools are currently unavailable. Furthermore,
selective cellular factors that can facilitate LD recruitment for lipophagy remain unknown. In this proposal, I aim
to address these greater needs in understanding the regulatory mechanisms of lipophagy and its function
relevant to aging and neurodegenerative disorders.
Our lab recently performed a cellular LD clearance high-throughput screen to identify small molecules and
pathways that induce selective lipid clearing autophagy for slowing age-related diseases. Among these, we
identified compound A20 that clears lipids in an autophagy-dependent manner in the nematode C. elegans to
promote healthspan and lifespan. Emerging evidence suggests that A20 may act via lipophagy to clear lipids. I
hypothesize that uncovering the lipophagy mechanism utilized by A20 will help us identify novel lipophagy
regulators. Furthermore, since lipid accumulation is now linked to AD, I will employ a novel human AD patient-
derived organoid model (3D neuronal culture with astrocytes) to determine whether A20 normalizes the lipid-
linked pathogenic signature and normalizes pathogenic molecular phenotypes. Finally, I will characterize the
functional changes in lipophagy and lipid homeostasis during AD using these human-derived organoid models.
My studies are significant, as they will help us generate new mechanistic insights towards lipophagy activation
during aging linked to AD. Such knowledge is vital to further our understanding of diseases exhibiting a lipophagy
deregulation component. Furthermore, completion of these studies may potentially reveal strategies that could
be used to combat neurodegenerative diseases.
项目概要/摘要
衰老的一个假设是细胞损伤的积累会导致组织功能障碍和生物功能障碍。
维持细胞稳态和保护细胞功能的关键机制是自噬,
水解细胞回收过程,其中细胞质物质(称为货物)包括脂滴
(LD)和受损的蛋白质在溶酶体中被降解,自噬的异常可能导致。
不同有毒胞质内容物的积累,这是许多与年龄相关的疾病的分子特征,
虽然自噬、衰老和疾病之间存在显着的功能联系,
导致年龄依赖性自噬减少的分子机制仍不清楚。
值得注意的是,自噬还可以选择性地招募一种类型的分子进行降解。最近的研究支持这一点。
选择性自噬在对抗多种人类大脑疾病中发挥着至关重要作用的假设。
尸检研究发现,受阿尔茨海默病影响的大脑中会积聚脂质物质
(AD),可能会阻碍神经功能,从而导致神经退行性变。
可用于选择性影响脂肪吞噬(LD 周转)的不同干预措施可能是谈判的理想选择
然而,目前尚无此类药理学或遗传工具。
可以促进 LD 招募以进行脂肪吞噬的选择性细胞因子仍然未知。在本提案中,我的目标是。
满足了解脂肪吞噬的调节机制及其功能的更大需求
与衰老和神经退行性疾病有关。
我们的实验室最近进行了细胞 LD 清除高通量筛选,以识别小分子和
其中,我们通过诱导选择性脂质清除自噬来减缓与年龄相关的疾病。
鉴定出化合物 A20 可以在线虫秀丽隐杆线虫中以自噬依赖性方式清除脂质
促进健康和寿命 新证据表明 A20 可能通过脂肪吞噬作用清除脂质 I。
揭示 A20 所利用的脂肪自噬机制将有助于我们识别新型脂肪自噬
此外,由于脂质积累现在与 AD 相关,我将采用一种新型人类 AD 患者——
衍生类器官模型(星形胶质细胞的 3D 神经元培养物)以确定 A20 是否使脂质正常化
最后,我将描述相关的致病特征并将致病分子表型标准化。
使用这些人源类器官模型研究 AD 期间脂肪吞噬和脂质稳态的功能变化。
我的研究很重要,因为它们将帮助我们对脂肪吞噬激活产生新的机制见解
这些知识对于进一步了解与 AD 相关的疾病至关重要。
此外,完成这些研究可能会揭示一些策略。
可用于对抗神经退行性疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ee Phie Tan其他文献
Ee Phie Tan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
溶酶体酸性脂肪酶调控“疾病相关小胶质细胞”表型转化在缺血性白质损伤修复中的作用及机制
- 批准号:32271033
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
山茱萸环烯醚萜苷类成分通过上调溶酶体酸性脂肪酶抑制肝星状细胞活化的药效及作用机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
DRG中溶酶体酸性脂肪酶LIPN在神经病理性疼痛的作用和机制
- 批准号:
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
TFEB靶向作用LAL调控脂类自噬改善糖尿病心肌病脂毒性机制研究
- 批准号:81660152
- 批准年份:2016
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
SNX10调控溶酶体酸性脂肪酶活性在巨噬细胞极化及动脉粥样硬化中的作用
- 批准号:81573441
- 批准年份:2015
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Recombinant production of structured fats that mimic human milk fat
重组生产模仿人乳脂肪的结构脂肪
- 批准号:
10822765 - 财政年份:2023
- 资助金额:
$ 12.63万 - 项目类别:
Liver-Gut-Microbiome Axis and Fatty acid absorption in Preterm Infants
早产儿的肝脏-肠道-微生物轴和脂肪酸吸收
- 批准号:
10635182 - 财政年份:2023
- 资助金额:
$ 12.63万 - 项目类别:
The regulation of renal tubular transport by cannabinoid receptor type 1 (CB1R) and its endogenous lipid ligands
1型大麻素受体(CB1R)及其内源性脂质配体对肾小管转运的调节
- 批准号:
10588113 - 财政年份:2023
- 资助金额:
$ 12.63万 - 项目类别:
Dual Fatty Acid Amide Hydrolase (FAAH)/Monoacylglycerol lipase (MAGL) Inhibitors for Cannabis Use Disorder (CUD).
双脂肪酸酰胺水解酶 (FAAH)/单酰基甘油脂肪酶 (MAGL) 抑制剂,用于治疗大麻使用障碍 (CUD)。
- 批准号:
10577008 - 财政年份:2023
- 资助金额:
$ 12.63万 - 项目类别:
Don S. Fredrickson Lipid Research Conference
唐·S·弗雷德里克森脂质研究会议
- 批准号:
10752509 - 财政年份:2023
- 资助金额:
$ 12.63万 - 项目类别: