Quantification of combinatorial epigenetic modifications using defined nucleosome standards
使用定义的核小体标准对组合表观遗传修饰进行定量
基本信息
- 批准号:10630256
- 负责人:
- 金额:$ 102.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAntibodiesAutomationBindingBiological AssayCancerousCell physiologyCellsChIP-seqChromatinClinicalClinical ResearchCodeComplexCytolysisDNADNA MethylationDataDetectionDevelopmentDiseaseDoseDrug TargetingEpigenetic ProcessGenesGenetic TranscriptionGenomicsHistonesHumanHuman PathologyIn SituIndividualLanguageLiteratureMalignant NeoplasmsMarketingMeasuresMethodsModificationMolecularMolecular ConformationNucleosomesPerformancePharmaceutical PreparationsPharmacologic SubstancePharmacotherapyPhasePlasmaPost-Translational Protein ProcessingPreparationProtocols documentationReagentRecombinantsRecoveryRegulationResearchSamplingServicesSite-Directed MutagenesisSpecificityTailTestingTimeValidationWestern BlottingWorkassay developmentbiomarker developmentbiomarker discoverycancer cellchromatin modificationcombinatorialcommercial launchcostdetection limitdrug developmentdrug discoveryepigenetic druggenome-widegenomic signaturehistone modificationinnovationliquid biopsynovelnovel markerresponsestability testingtool
项目摘要
PROJECT SUMMARY
Post-translational modification of histone tails (histone PTMs) and DNA methylation (DNAme) on
nucleosomes form a sophisticated molecular code that regulates gene transcription. Aberrant regulation of these
chromatin modifications is associated with a vast array of human pathologies. While the majority of work in the
field has focused on signatures of individual modifications, combinations of histone PTMs and/or DNAme can
be more specific and informative than single marks alone. For instance, although healthy cells and cancerous
cells both have H3K27me3 and DNAme distributed genome-wide, the co-localization of these two modifications
occurs uniquely in cancer cells. However, existing tools to measure global levels of chromatin modifications are
low-throughput, display low sensitivity, and are unable to measure combinatorial modifications (e.g. immunoblot).
The development of assays that overcome these limitations and are compatible with multiple sample types
(including cellular samples or plasma [for detection of circulating nucleosomes, i.e. liquid biopsy]) will make the
study of chromatin modifications widely accessible for academic, clinical, and pharmaceutical research.
Here, EpiCypher will develop QuantiNucTM assays, a breakthrough epigenetics platform to quantify single
and combinatorial chromatin modifications directly on nucleosomes from cells or plasma samples. The
innovation of this proposal includes the a) application of designer nucleosomes (dNucs) to systematically identify
top-performing detection reagents and to serve as quantitative assay standards, b) development of recombinant
EpiSensors for unbiased detection of DNA and DNAme, and c) development of a proprietary targeted sample
processing method for high-throughput cell-based assays. Overall, this platform will provide a quantitative, low-
cost, and scalable approach to leverage analysis of chromatin modifications (i.e. histone PTMs and/or DNAme)
for chromatin research, drug development, and novel biomarker discovery. In Phase I, we developed a
QuantiNuc assay targeting combinatorial H3K4me3+H3K27ac, PTMs that are co-enriched at actively expressed
genes. We validated the specificity and performance of this QuantiNuc assay by establishing key analytical
parameters and applying the assay to quantify levels of H3K4me3+H3K27ac nucleosomes from human plasma
samples. In Phase II, we will develop new QuantiNuc assays to measure other high-value single and
combinatorial chromatin modifications and further validate these assays for use with human plasma samples
(i.e. liquid biopsy). In addition, we will develop a novel targeted sample processing method for cell-based
QuantiNuc assays, which will streamline the process of cell lysis and chromatin fragmentation to deliver a high-
throughput, low-cost approach for clinical research. Finally, we will prepare for commercial launch of QuantiNuc
assays by assembling beta-kits and performing internal and external validation testing of both liquid biopsy and
cell-based assays, which will be used to develop reliable assay protocols and product literature. Market
availability of these assays will transform biomarker discovery and accelerate epigenetic drug development.
项目概要
组蛋白尾部(组蛋白 PTM)和 DNA 甲基化 (DNAme) 的翻译后修饰
核小体形成复杂的分子密码来调节基因转录。这些监管失当
染色质修饰与多种人类病理学相关。虽然大部分工作都在
该领域的重点是个体修饰的特征,组蛋白 PTM 和/或 DNAme 的组合可以
比单独的单个标记更具体、信息更丰富。例如,虽然健康细胞和癌细胞
细胞均具有分布在全基因组范围内的 H3K27me3 和 DNAme,这两种修饰的共定位
独特地发生在癌细胞中。然而,测量染色质修饰全局水平的现有工具是
低通量,显示低灵敏度,并且无法测量组合修饰(例如免疫印迹)。
克服这些限制并与多种样本类型兼容的检测方法的开发
(包括细胞样本或血浆[用于检测循环核小体,即液体活检])将使
染色质修饰的研究广泛应用于学术、临床和药物研究。
在这里,EpiCypher 将开发 QuantiNucTM 检测,这是一个突破性的表观遗传学平台,用于量化单个
以及直接对细胞或血浆样品的核小体进行组合染色质修饰。这
该提案的创新包括a)应用设计核小体(dNucs)来系统地识别
顶级性能的检测试剂并作为定量测定标准,b) 重组的开发
EpiSensors 用于公正地检测 DNA 和 DNAme,以及 c) 开发专有的目标样品
高通量细胞分析的处理方法。总体而言,该平台将提供定量的、低
成本和可扩展的方法来利用染色质修饰分析(即组蛋白 PTM 和/或 DNAme)
用于染色质研究、药物开发和新型生物标志物发现。在第一阶段,我们开发了
QuantiNuc 检测针对组合 H3K4me3+H3K27ac,在活跃表达处共富集 PTM
基因。我们通过建立关键分析验证了该 QuantiNuc 检测的特异性和性能
参数并应用该测定来定量人血浆中 H3K4me3+H3K27ac 核小体的水平
样品。在第二阶段,我们将开发新的 QuantiNuc 检测方法来测量其他高价值的单一和
组合染色质修饰并进一步验证这些检测方法是否可用于人类血浆样本
(即液体活检)。此外,我们将开发一种新颖的基于细胞的靶向样品处理方法
QuantiNuc 检测,将简化细胞裂解和染色质碎片的过程,以提供高
高通量、低成本的临床研究方法。最后,我们将为QuantiNuc 的商业发布做准备
通过组装 beta 套件并对液体活检和进行内部和外部验证测试来进行测定
基于细胞的测定,将用于开发可靠的测定方案和产品文献。市场
这些测定的可用性将改变生物标志物的发现并加速表观遗传药物的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrea Lynn Johnstone其他文献
Andrea Lynn Johnstone的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrea Lynn Johnstone', 18)}}的其他基金
Development of ultra-efficient antibodies for single cell mapping applications
开发用于单细胞作图应用的超高效抗体
- 批准号:
10601458 - 财政年份:2023
- 资助金额:
$ 102.45万 - 项目类别:
Development of a high-throughput epigenomic mapping platform to molecularly phenotype Crohn's disease
开发克罗恩病分子表型的高通量表观基因组作图平台
- 批准号:
10683287 - 财政年份:2022
- 资助金额:
$ 102.45万 - 项目类别:
Development of a high-throughput epigenomic mapping platform to molecularly phenotype Crohn's disease
开发克罗恩病分子表型的高通量表观基因组作图平台
- 批准号:
10384457 - 财政年份:2021
- 资助金额:
$ 102.45万 - 项目类别:
Quantification of combinatorial epigenetic modifications using defined nucleosome standards
使用定义的核小体标准对组合表观遗传修饰进行定量
- 批准号:
10481109 - 财政年份:2019
- 资助金额:
$ 102.45万 - 项目类别:
Rapid quantification of nuclear citrullination in human neutrophils
快速定量人中性粒细胞核瓜氨酸化
- 批准号:
10331838 - 财政年份:2018
- 资助金额:
$ 102.45万 - 项目类别:
Rapid quantification of nuclear citrullination in human neutrophils
快速定量人中性粒细胞核瓜氨酸化
- 批准号:
9911359 - 财政年份:2018
- 资助金额:
$ 102.45万 - 项目类别:
Mechanisms Underlying Inhibition of Regeneration in CNS Neurons
中枢神经系统神经元再生抑制的机制
- 批准号:
7662365 - 财政年份:2008
- 资助金额:
$ 102.45万 - 项目类别:
Mechanisms Underlying Inhibition of Regeneration in CNS Neurons
中枢神经系统神经元再生抑制的机制
- 批准号:
7545241 - 财政年份:2008
- 资助金额:
$ 102.45万 - 项目类别:
Mechanisms Underlying Inhibition of Regeneration in CNS Neurons
中枢神经系统神经元再生抑制的机制
- 批准号:
7888145 - 财政年份:2008
- 资助金额:
$ 102.45万 - 项目类别:
相似国自然基金
新细胞因子FAM19A4联合CTLA-4抗体在肿瘤治疗的功能和机制研究
- 批准号:32370967
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于吡啶盐的可裂解抗体-药物偶联方法研究
- 批准号:22307081
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人和小鼠中新冠病毒RBD的免疫原性表位及其互作抗体的表征和结构组学规律的比较研究
- 批准号:32371262
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于淬灭抗体的重金属镉快速定量免疫分析
- 批准号:22306074
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TFAM条件性敲除重塑树突状细胞免疫代谢增强PD-1抗体抗肿瘤作用的机制研究
- 批准号:82303723
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Automation of Liquid Nitrogen Freezer for Cryopreservation of Unique Human Biospecimens at the Vanderbilt Biospecimen Storage Facility
在范德比尔特生物样本储存设施中使用液氮冷冻机自动化冷冻保存独特的人类生物样本
- 批准号:
10736276 - 财政年份:2023
- 资助金额:
$ 102.45万 - 项目类别:
i-AKC: Integrated AIRR Knowledge Commons
i-AKC:综合 AIRR 知识共享
- 批准号:
10712558 - 财政年份:2023
- 资助金额:
$ 102.45万 - 项目类别:
Enhancing Epigenetic Analysis Of Rare Cells With Multi-Phase Microfluidics
利用多相微流体增强稀有细胞的表观遗传分析
- 批准号:
10552039 - 财政年份:2020
- 资助金额:
$ 102.45万 - 项目类别:
High-spatial-resolution ECM-inclusive multi-omics sequencing of human PFA and FFPE tissue slides
对人类 PFA 和 FFPE 组织切片进行高空间分辨率 ECM 多组学测序
- 批准号:
10698076 - 财政年份:2020
- 资助金额:
$ 102.45万 - 项目类别: